PRACTICAL NO:- 01 Date
AIM:-Write a program to find out the factorial of a given number.

OBJECTIVE:- Factorial is represented using ‘!’. So seven factorial will be written as (7!).
 Factorial of a given number ‘n’ can be find out by the formula:
 n*(n-1)*(n-2)*………………………..*2*1
 or n! = n*(n-1)*(n-2)*………………………..*2*1
 Zero factorial (0!) is defined as one i.e. 0! = 1.
 SOURCE CODE:-
//Program to find out the factorial of a given number…..

#include<iostream> //Header file
using namespace std;

int main()

{

int i, n, fact=1;

cout<<"enter the number";

cin>> n;

for (i=1; i<=n; i++)

{

fact = fact*i;

}

cout<<"the factorial is"<<fact;
return 0;

cin.get();

cin.ignore();
}

Roll no 01
OUTPUT:-
[image: image1.png]
Roll no 02
PRACTICAL NO:-02 Date
AIM:- Write a program to check whether a given number is an Armstrong number or not.

OBJECTIVE:- A number is Armstrong if the sum of cubes of individual digits of a number is equal

 to the number itself.
 For example: 371 is an Armstrong number as
 (3*3*3) + (7*7*7) + (1*1*1) = 371.
 SOURCE CODE:-
//Program to check whether a given number is an Armstrong number or not……

#include<iostream> /Header file
using namespace std;

int main()

{

int n ,arm=0,digit,num;

cout<<"enter a number";

cin>>n;

num=n;

while (n>0)

{

digit=n%10;

n=n/10;

arm=(digit*digit*digit)+arm;

}

if(num==arm)

cout<<num<<"is armstrong";

else

cout<<num<<"is not armstrong";

return 0;

cin.get();

 cin.ignore();

}

Roll no 03
OUTPUT:-
[image: image2.png]
[image: image3.png]
Roll no 04
PRACTICAL NO:- 03 Date
AIM:- Raising a number n to a power p is the same as multiplying n by itself p times. Write a function called power () that takes a double value for n and an int value for p, and returns the result as double value. Use a default argument of 2 for p, so that if this argument is omitted, the number will be squared.
 Write a main() function that gets values from the user to test this function.

OBJECTIVE:- The nth of power 2 can be find out as:

 (2*2*2……………..n times)
 &

 If the argument p=2 is omitted then Square of a given number n can be find out as:

 Square = number * number.
 SOURCE CODE:-
//Program to calculate the power of a given number…..
#include<iostream> //Header file
using namespace std;
int power (int, double); //Function Declaration of power
int square (int); // Function Declaration of square
int main()

{

int a;

double result;

cout<<"enter a number";

cin>>a;

result= power(a, 2); //Function calling

cout<<"power of the number is\t"<<result<<”\n”;

 square(a); //Function calling

return 0;

}
int power (int n, double p) //Function Definition of power
{ int c =1,i;

for (i=1; i<=n; i=i+1)

{

c=c*p;

}

return (c);

}
Roll no 05
int square (int a) // Function Definition of square
{

int c;

c=a*a;

cout<<"square of the number\t"<<c;

return 0;

}

Roll no 06

OUTPUT:-
[image: image4.png]
Roll no 07
PRACTICAL NO:-04 Date
AIM:- Write a program to create a Fibonacci series.
OBJECTIVE:- By definition, the first two numbers in the Fibonacci sequence are 0 and 1,
 and each subsequent number is the sum of the previous two.
 In mathematical terms, the sequence Fn of Fibonacci numbers is defined by
 Fn = Fn-1 + Fn-2.
 Therefore, The Fibonacci Sequence is the series of numbers:-

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34…….

 SOURCE CODE:-
//Program to create a Fibonacci series……
#include<iostream> //Header file.
using namespace std;

int main()

{

int a=0,b=1,i,c;

cout<<"fabonacci series\n";

cout<<a<<"\n";

cout<<b<<"\n";

c=a+b;

 while(c<10)

{

 cout<<c<<"\n";

a=b;

b=c;

c=a+b;

}

return 0;

cin.get();

 cin.ignore();

}
Roll no 08

OUTPUT:-
[image: image5.png]
Roll no 09

PRACTICAL NO:- 05 Date
AIM:- Create the equivalent of a four function calculator. The program should request the user to

enter a number, an operator, and another number. It should then carry out the specified arithmetical

operation: adding, subtracting, multiplying, or dividing the two numbers. (It should use a switch

statement to select the operation). Finally it should display the result.

When it finishes the calculation, the program should ask if the user wants to do another

calculation. The response can be ‘Y’ or ‘N’.

OBJECTIVE:- A Four Function calculator can be made by using “switch” statement which uses the concept as:-
 First, the integer expression following the keyword switch is evaluated. The value it gives is then matched, one by one, against the constant values that follow the case statements. When a match is found, the program executes the statements following that case, and all subsequent case and default statements as well. If no match is found with any of the case statements, only the statements following the default are executed.

 & For asking the user for another calculation we will use iteration statement i.e. “do while” loop which will run atleast once.

 SOURCE CODE:-
//Program to create the equivalent of a four function calculator..
#include<iostream> //Header file…
using namespace std;

int main()

{

int num1,num2;

char opr, ch;

float result;

do

{

cout<<"Enter first number, operator, second number:";

cin>>num1>>opr>>num2;

switch (opr)

{

case '+': result=num1+num2;

 break;

 case '-': result=num1-num2;

 break;

case '*': result=num1*num2;

 break;

case '/': result=num1/num2;

 break;

default: cout<<"\nWrong operator";

}
Roll no 10

cout<<"\nAnswer:\t"<<result;

cout<<"\nPress Y for another\t";

cin>>ch;

} while((ch=='Y')||(ch=='y'));

return 0;

cin.get();

cin.ignore();

}

Roll no 11

OUTPUT:-
[image: image6.png]
Roll no 12
PRACTICAL NO:- 06 Date
AIM:- Write a program that uses a structure called point to model a point. Define three points, and have the user input values to two of them. Then set the third point equal to the sum of the other two, and display the value of the new point.
OBJECTIVE:- A point on the two dimensional plane can be represented by two numbers:-

 an X coordinate and a Y coordinate.

For example- (4,5) represents a point 4 units to the right of the origin along the X axis and 5 units up the Y axis. The sum of two points can be defined as a new point whose X coordinate is the sum of the X coordinates of the points and whose Y coordinate is the sum of their Y coordinates.

 For making the sum of these points we will use “STRUCTURE” because a structure contains a number of data types grouped together. These data types may or may not be of the same type.
 SOURCE CODE:-
//Program to calculate the sum of two points of a coordinate
#include<iostream> //Header File
using namespace std;

int main()

{

struct plane //Declaration of a Structure

{

int x1,y1,x2,y2;

int x3,y3;

} p;

cout<<"enter the corrdinates of P1:\t";

cin>>p.x1>>p.y1;

cout<<endl;

cout<<"enter the coordinates of P2:\t";

cin>>p.x2>>p.y2;

cout<<endl;

p.x3=p.x1+p.x2;

p.y3=p.y1+p.y2;

cout<<"the coordinates of P1 + P2 are:\t"<<p.x3<<" "<<p.y3;

return 0;

cin.get();

cin.ignore();

}

Roll no 13

OUTPUT:-
[image: image7.png]
Roll no 14

PRACTICAL NO:-07 Date
AIM:- A phone number, such as (212) 767-8900, can be thought of as having three parts: the area

code (212), the exchange (767) and the number (8900). Write a program that uses a structure to

store these three parts of a phone number separately. Call the structure phone. Create two

structure. Variables of type phone. Initialize one, and have the user input a number for the other

one. Then display both numbers.
OBJECTIVE:- A Structure contains a number of data types grouped together. These data types may or may not be of the same type.
 Here we will create two structure. In first Structure we will initialize all the three variables & in second Structure we will get input from the user using (.) “dot” operator. After that we will display both the numbers of the structure using instance with dot operator.
 SOURCE CODE:-
//Program to create two structure to display a phone number.
#include<iostream> //Header file…
using namespace std;

int main()

{

struct phone1

{

int areacode=333;

int exchange=765, number=5600;

} p1;

struct phone2

{

 int areacode;

 int exchange, number;

} p2;

cout<<"enter your number:";

cin>>p2.areacode>>p2.exchange>>p2.number;

cout<<endl<<"My number is: ("<<p1.areacode<<") "<<p1.exchange<<"-"<<p1.number<<endl;

cout<<endl<<"Your number is :("<<p2.areacode<<") "<<p2.exchange<<"-"<<p2.number<<endl;

return 0;

cin.get();

cin.ignore();

}

Roll no 15

OUTPUT:-
[image: image8.png]
Roll no 16

PRACTICAL NO:-08 Date
AIM:- Write a function called reversit () that reverses a string (an array of char). Use a for loop that

swaps the first and last characters, then the second and next to last characters and so on. The

string should be passed to reversit () as an argument.

Write a program to exercise reversit (). The program should get a string from the user, call reversit

(), and print out the result.

OBJECTIVE:- The way a group of characters can be stored in a character array. Character arrays are called strings. A string constant is a one-dimensional array of characters terminated by a null (‘\0’).

 Here we will use a for loop that swaps the first and last characters, then the second and next to last characters and so on. & a function which will reverse the input string.

 SOURCE CODE:-
//Program to reverse the input string..

#include<iostream> //Header file
using namespace std;

int reversit(char []); //Function Declaration
int main()

{

 char string1[40];

 cout<<"Enter the string\n";

 gets(string1);
 reversit(string1); //Calling of Function reversit with input string as argument.
 return 0;
 cin.get();
 cin.ignore();

}

int reversit(char string1[40]) //Function Definition
{
 char string2[40];

 int i,j,k;

 for (i=0;string1[i]!='\0';i++);

 for (k=i, j=0;k>0;k--,j++)

 {

 string2[j]=string1[k-1];

 }

 string2[j]='\0';

Roll no 17

cout<<"\n";

puts(string2);

cout<<"\nThe reverse of input string is:";

puts(string2);

return 0;

cin.get();

cin.ignore();

}

Roll no 18

OUTPUT:-
[image: image9.png]
Roll no 19

PRACTICAL NO:-09 Date
AIM:- Write a program that display the menu of Dominos, receives order & display their bill with tax using Class and objects.
OBJECTIVE:- A Menu of dominos can be made by using Class with data member and their member Function. Classes define types of data structures and the functions that operate on those data structures. Instances of these data types are known as objects and can contain member variables, constants, member functions. Here the function is defined outside the class. A tax of 12% is added on overall bill.
 SOURCE CODE:-
//Program to print menus of Dominos….

#include<iostream> //Header file…
using namespace std;

class dominos //Class declaration
{

public:

int srno;

int ch;

float price,tax,sum;

void getmenu();

void display();

};

void dominos::getmenu() //Member Function
{

 sum=0;

cout<<"\n\t\t\t*****Dominos Menu*****";

cout<<"\nThe menus for the Veg items with their prices are:\n";

cout<<"\nSr no:-\tMenu items:-\t\t\tPrices:-";

cout<<"\n1.\tCheese & Tomato\t\t\tRs.200/-";

cout<<"\n2.\tDouble Cheese\t\t\tRs.220/-";

cout<<"\n3.\tMexican Green Wave\t\tRs.250/-";

cout<<"\n4.\tCheese & Barbeque Chicken\tRs.400/-";

cout<<"\n5.\tSpicy Chicken\t\t\tRs.320/-\n";

do

{ cout<<"\nEnter the serial no of an item from the menu";

 cin>>srno;
Roll no 20

 switch(srno)

 {

case 1: cout<<"\nYou have ordered Cheese & Tomato";

 price=200;

 cout<<"\nPrice is\tRs."<<price;

 sum=sum+price;

 break;

case 2: cout<<"\nYou have ordered Double Cheese";

 price=220;

 cout<<"\nPrice is\tRs."<<price;

 sum=sum+price;

 break;

case 3: cout<<"\nYou have ordered Mexican Green Cave";

 price=250;

 cout<<"\nPrice is\tRs."<<price;

 sum=sum+price;

 break;

case 4: cout<<"\nYou have ordered Cheese & Barbeque Chicken";

 price=230;

 cout<<"\nPrice is\tRs."<<price;

 sum=sum+price;

 break;

case 5: cout<<"\nYou have ordered Spicy Chicken";

 price=320;

 cout<<"\nPrice is\tRs."<<price;

 sum=sum+price;

 break;

 default: cout<<"\n Enter the choice between 1-5";

 }

 cout<<"\nDo you want more items?\nPress 1 for YES & 0 for NO";

 cin>>ch;

 } while(ch);

}
Roll no 21

void dominos::display() //Member Function
{

 tax=(float)(sum*12)/100;

cout<<"\n Sub Total:-\tRs."<<sum;

cout<<"\n Tax 12% \tRs."<<tax;

cout<<"\n Total Amount to be paid:-\tRs."<<sum+tax;

cout<<"\n\t\t\t ******Thanks******";

}

int main()

{

dominos d; //Declaration of a class member

d.getmenu(); // Calling of Member Function of a class using object

d.display(); // Calling of Member Function of a class using object

 return 0;

cin.get();

cin.ignore();

}
Roll no 22

OUTPUT:-
[image: image10.png]
Roll no 23
PRACTICAL NO:- 10 Date
AIM:- Write a program for Class implementation by passing arguments in member function.
OBJECTIVE:- The C++ programming language allows programmers to separate program-specific data types through the use of classes. Classes define types of data structures and the functions that operate on those data structures. Instances of these data types are known as objects and can contain member variables, constants, member functions. An important feature of the C++ class are member functions. Each datatype can have its own built-in functions (referred to as methods) that have access to all
(public and private) members of the data type.
 SOURCE CODE:-
//Program to create a class implementing passing arguments in member function….
#include<iostream> //Header file…..
using namespace std;

class measure //Class Declaration.
{

private:

int feet;

float inches;

public:

void get()

{

cout<<"Enter the value of feet & inches:";

cin>>feet>>inches;

}

void display()

{

cout<<"\nThe value of feet is:"<<feet<<"\t\t\tinches is:"<<inches;

}

void increament(measure b)

{

feet= feet+ b.feet;

inches= inches+ b.inches;

}

};
Roll no 24
int main()

{

measure x,y;

x.get();

y.get();

x.increament(y);

x.display();

return 0;
 cin.get();

cin.ignore();

}
Roll no 25

OUTPUT:-

[image: image11.png]:-
Roll no 26

 PRACTICAL NO:-11 Date
AIM:- Create a class rational which represents a numerical value by two double values-

 NUMERATOR & DENOMINATOR. Include the following public member Functions:

· constructor with no arguments (default).

· constructor with two arguments.

· void reduce () that reduces the rational number by eliminating the highest common

 factor between the numerator and denominator.

 Write a main () to test all the functions in the class.

OBJECTIVE:- The Constructor is defined to be a special member function which helps in initializing an object while it is declared. The name of the constructor is same as that of the class name. Depending on how the member data of objects are provided with values while declaration they are classified. A Default Constructor is that which does not take any arguments while a Parameterized Constructor is that which take the arguments for their member data.

 SOURCE CODE:-
//Program to eliminate the rational no ………..
#include<iostream> //Header File…….
using namespace std;

class rational //Declaration of a class
{

private:

double num;

double den;

public:

rational() //Default constructor…

{

num=10;

den=35;

cout<<"In default constructor the rational number is:"<<num<<"/"<<den;

}

rational (int x, int y) //Parameterized Constructor..

{

num=x;

den=y;

cout<<"\nIn parameterized constructor the rational number is:"<<num<<"/"<<den;

}
Roll no 27

void reduce()

{

 int hcf;

 for (int i=1.0; i<=num && i<=den; i++)

 {

 if (num%i==0 && den%i==0)

 hcf=i;

 else{}

 }

 num=num/hcf;

 den=den/hcf;

 cout<<"\n After reducing the rational number:-";

 cout<<"\n The Numerator is: "<<num;

cout<<"\nThe Denominator is: "<<den;

cout<<"\nThe rational no is:"<<num<<"/"<<den;

 }

};

int main()

{

rational first;

first.reduce();

cout<<"\n";

rational second(56,45);

second.reduce();

cout<<"\n";

rational third(22,99);

third.reduce();

cout<<"\n";

return 0;
 cin.get();

cin.ignore();

}

Roll no 28
OUTPUT:-

[image: image12.png]
Roll no 29

 PRACTICAL NO:-12 Date
AIM:- Create two classes DM and DB which store the value of distances. DM stores distances in

meters and centimeters and DB in feet and inches.
 Write a program that can read values for the class objects and add one object of DM with another object of DB. Use a friend function to carry out the addition operation. The object that stores the results maybe a DM object or DB object, depending on the units in which the results are required. The display should be in the format of feet and inches or meters and centimeters depending on the object on display.
OBJECTIVE:- A friend function is a function that is not a member of a class but has access to the class's private and protected members. Friend functions are normal external functions that are given special access privileges. Friends are not in the class's scope, and they are not called using the member-selection operators (. and –>) unless they are members of another class. A friend function is declared by the class that is granting access. The friend declaration can be placed anywhere in the class declaration. It is not affected by the access control keywords. For converting centimeters in inches we have 1 cm = 0.393701.
 SOURCE CODE:-
//Program to calculate the overall distances in feet & inches……

#include<iostream> //Header File….
using namespace std;

class DM //Declaration of a class..
{

public:

float metre;

float cm;

void get()

{

cout<<"\nEnter the Distances in Metre & Centimetre";

cin>>metre>>cm;

}

};

class DB

{

private:

float feet;

float inches;

public:

void get()

{

cout<<"\nEnter the Distances in Feet & inches";

cin>>feet>>inches; }

Roll no 30

void display()

{

cout<<"\n\tFeet:"<<feet<<"\tInches"<<inches;

}

friend DB operator+(DM,DB); //Friend Function Overloading..
};

DB operator+ (DM m, DB b) //Function Definition….
{

 DB b2;

 m.cm+=m.metre*100;

 b.inches+=b.feet*12;

 b2.inches=m.cm*0.393701+b.inches;

 while(b2.inches>=12)

 {

 b2.feet++;

 b2.inches-=12;

 }

 return b2;

}

int main()

{

DM dm;

dm.get();

DB db;

db.get();

DB dba;

dba=dm+db;

cout<<"\n The addition of Two Distances is:\n";

dba.display();

return 0;
cin.get();

cin.ignore();
}

Roll no 31

OUTPUT:-

[image: image13.png]
Roll no 32

 PRACTICAL NO:-13 Date
AIM:- Imagine a tollbooth with a class called toll Booth. The two data items are:-
 A type unsigned int to hold the total number of cars, and a type double to hold the total amount of money collected.
 A constructor initializes both these to 0. A member function called payingCar () increments the car

total and adds 0.50 to the cash total. Another function, called nopayCar (), increments the car total

but adds nothing to the cash total. Finally, a member function called displays the two totals. Include

a program to test this class. This program should allow the user to push one key to count a paying

car, and another to count a nonpaying car. Pushing special key should cause the program to print

out the total cars and total cash and then exit.

OBJECTIVE:- The Constructor is defined to be a special member function which helps in initializing an object while it is declared. The keyword this identifies a special type of pointer. Every object in C++ has access to its own address through an important pointer called this pointer. The this pointer is an implicit parameter to all member functions. Therefore, inside a member function, this may be used to refer to the invoking object. For exit function the header file used is process.h
SOURCE CODE:-
//Program to create a class & print its data members value….

#include<iostream> //Header file..
#include<process.h> //for exit() function..
using namespace std;

class tollbooth

{

private:

unsigned int cars;

double money_paid;

int ch;

public:

tollbooth() //Constructor….

{

cars=0;

money_paid=0.0;

}

void payingcar()

{

cars++;

money_paid+=0.50;

}
Roll no 33

void nopaycar()

{

cars++;

}

void display()

{

cout<<"\nThe total no of cars is:"<<cars;

cout<<"\nThe total amount of money collected is: Rs"<<money_paid;

}

void choice()

{

cout<<"\nThe keys are:";

cout<<"\nEnter 1 for Paying Car.\nEnter 2 for Non Paying car.\nEnter 3 for Exit.";

cout<<"\nEnter your key:";

cin>>ch;

if(ch==1)

{

this->payingcar(); //this pointer…

this->choice();

}

else if(ch==2)

{

this->nopaycar();

this->choice();

}

else

{

this->display();

exit(0); //exit function…

}

}

};

int main()

{

tollbooth t;

t.choice();

return 0;

cin.get();

cin.ignore();

}
Roll no 34
OUTPUT:-

[image: image14.png]
Roll no 35

 PRACTICAL NO:-14 Date
AIM:- Write a program using classes to show different operator overloading (i.e. Unary, Binary & left & right shift).

OBJECTIVE:- In C++ the overloading principle applies not only to functions, but to operators too. A programmer can provide his or her own operator to a class by overloading the built-in operator to perform some specific computation when the operator is used on objects of that class. On the other hand, operator overloading, like any advanced C++ feature, makes the language more complicated. There are many operators which can be overloaded such as unary operator (‘+’, ‘-‘ ,’++’), Binary operator(‘+’, ‘-‘ ,’/’) ,
 Left shift & right shift (<< & >>), etc. A unary operator is one which is defined over a single operand whereas binary operator is defined over two operand.
SOURCE CODE:-
(a) Program of Overloading Unary operator….
#include<iostream> //Header file…
using namespace std;

class integer

{

 private:

int x;

public:

integer (int y=0) //Constructor…..

{

x=y;

}

integer operator-() //Unary operator overloading..

{

integer t;

t.x=-x;

return t;

}

void operator++() //Unary operator overloading..

{

x++;

}

void display()

{

cout<<x;

}

};
Roll no 36

int main()

{

integer a,b(5),c(-7);

cout<<"\nb=";

b.display();

a= -b;

cout<<"\na=";

a.display();

cout<<"\nc=";

c.display();

a= -c;

cout<<"\na=";

a.display();

++c;

cout<<"\nc=";

c.display();

return 0;
 cin.get();

 cin.ignore();
}

Roll no 37

OUTPUT:-

[image: image15.png]
Roll no 38

(b) Program of Overloading Binary operator….
#include<iostream> //Header file….
using namespace std;

class integer

{

 private:

int x;

float y;

public:

integer(int s=0,float t=0.0)

{

x=s;

y=t;

}

integer operator+ (integer &m)

{

integer t;

t.x=x+m.x;

t.y=y+m.y;

return t;

}

void display()

{

cout<<"\nx="<<x;

cout<<"\ny="<<y<<"\n";

}

};

int main()

{

integer a(5,7.8),b(3,8.9);

integer c;

cout<<"\nFor a:";

a.display();

cout<<"\nFor b:";

b.display();

c=a+b;

cout<<"\nThe sum is:";

c.display();

return 0;

}

Roll no 39

OUTPUT:-

[image: image16.png]
Roll no 40

(c) Program of Overloading Left & right shift operator….
#include<iostream> //Header file…..
using namespace std;

class date

{

 private:

int d,m,y;

public:

friend istream&operator>>(istream &is, date &dt) //Left shift overloading..

{

is>>dt.d>>dt.m>>dt.y;

return is;

}

friend ostream&operator<<(ostream &os, date &dt) //Right shift overloading..

{

os<<dt.d<<"-"<<dt.m<<"-"<<dt.y;

return os;

}

};

int main()

{

date dt;

cout<<"\nEnter your date:";

cin>>dt;

cout<<"\nThe date entered is:";

cout<<dt;

return 0;
 cin.get();

 cin.ignore();

}

Roll no 41

OUTPUT:-

[image: image17.png]
Roll no 42

 PRACTICAL NO:-15 Date
AIM:- Make a class Employee with a name and salary. Make a class Manager inherits from Employee. Add an instance variable, named department of type string. Supply a method to toString that prints the manager’s name, department and salary. Make a class Executive inherits from Manager. Supply a method to String that prints the string “Executive” followed by the information stored in the Manager superclass object.

 Supply a test program that tests these classes and methods.
OBJECTIVE:- Inheritance means using the Pre-defined Code. This is very Main Feature of OOPS. With the advantage of Inheritance we can use any code that is previously created. With the help of inheritance we uses the code that is previously defined but always Remember, We are only using that code but not changing that code. There are various types of inheritance & Multilevel Inheritance is one of them. Multilevel Inheritance is a method where a derived class is derived from another derived class.
 SOURCE CODE:-
//Program to print the content of a class inherited by multilevel inheritance.…..

#include<iostream> //Header file

using namespace std;

class employee //Class definition

{

 public:

 char name[100];

 int salary;

 void get()

 {

 cout<<"Enter name and salary of employee:";
 cin>>name>>salary;

 }

 };
class manager: public employee

 {

 public:

 char department[100];

 void in()
 {

 cout<<"Enter the department of manager:";

 cin>>department;
 cout<<”\n”;
 }

Roll no 43

 void out()

 {
 cout<<"Manager name:"<<name<<"\n"<<"Dept of Manager:”<<department<<”\Salary of Manager:”<<salary;
 }

 };
 class executive: public manager

 {

 public:

 void output()

 {

 cout<<"executive\n ";

 out();

 }

 };

 int main()

{

 executive e;

 e.get();

 e.in();

 e.output();

 cin.get();

 cin.ignore();

 return 0;

 }
Roll no 44

OUTPUT:-

[image: image18.png]
Roll no 45
 PRACTICAL NO:-16 Date
AIM:- Consider the following class definition

class father {

protected : int age;

public:
father (int x) {age = x;}

virtual void iam ()

{ cout < < “I AM THE FATHER, my age is : ”<< age<< end1:}

};

Derive the two classes son and daughter from the above class and for each, define iam () to write

our similar but appropriate messages. You should also define suitable constructors for these

classes. Now, write a main () that creates objects of the three classes and then calls iam () for

them. Declare pointer to father. Successively, assign addresses of objects of the two derived

classes to this pointer and in each case, call iam () through the pointer to demonstrate

polymorphism in action.
OBJECTIVE:- Here we use the concept of Pointers to Derived Classes i.e. Suppose A is the base class for

 the class B .Any pointer to A type (base class) can be assigned the address of an object of the class B (Derived class). In addition of an object of its own class i.e. , pointers to objects of base class are type compatible with pointers to objects of derived class. We use a pointer to base type to access the public members of the base class when it is made to point to an object of the base type, and to access the public members of the derived class when it is made to point to an object of the derived type by using the concept

of Virtual Functions.

 SOURCE CODE:-
//Program to print the given program using the concept of Pointers to derived class…..

#include<iostream> //Header file

using namespace std;
class father //Base class
{

protected:

 int age;

public:

father(int x=0)

 {

 age=x;

 }

virtual void iam()

{

cout<<"I AM THE FATHER, my age is:"<<age<<endl;

}

};
Roll no 46

class son: public father //Derived class
{

protected:

 int age;

public:

son(int x=0)

 {

 age=x;

 }

virtual void iam()

{

cout<<"I AM THE SON, my age is:"<<age<<endl;

}

};

class daughter: public father //Derived class
{

protected:

 int age;

public:

daughter(int x=0)

 {

 age=x;

 }

virtual void iam()

{

cout<<"I AM THE DAUGHTER, my age is:"<<age<<endl;

}

};

int main()

{

father f(42);

f.iam();

son s(20);

s.iam();

daughter d(21);

d.iam();

cout<<"\nBY USING POINTERS TO CLASS\n";

father *ff; //Pointer to base class
Roll no 47

 ff=&s;
 s.iam();

ff=&d;

d.iam();

return 0;
 cin.get();

 cin.ignore();
}
Roll no 48

OUTPUT:-

[image: image19.png]
Roll no 49

 PRACTICAL NO:-17 Date
AIM:- A hospital wants to create a database regarding its indoor patients. The information to store

include

a) Name of the patient

b) Date of admission

c) Disease

d) Date of discharge

Create a structure to store the date (year, month and date as its members). Create a base class to

store the above information. The member function should include functions to enter information and

display a list of all the patients in the database. Create a derived class to store the age of the

patients. List the information about all the to store the age of the patients. List the information about

all the pediatric patients (less than twelve years in age).
OBJECTIVE:- Here we use the concept of both structure and the class. We declare structure globally which store the value of date i.e. year, month, and date and a class which store the above given information of patients. Here an object of structure is declared in the class and is accessible using dot (.) operator.

 SOURCE CODE:-
//Program to print the patients details…………..
#include<iostream> //Header file
using namespace std;

struct date //Declaration of a Structure
{

int d,y;

char m[20];

};

class patients

{

char name[30];

date d_of_add;

char disease[30];

date d_of_dis;

public:

void getdata()

{

cout<<"\nEnter the name of the patient:";

cin>>name;

cout<<"Enter the date of admission:";

cin>>d_of_add.d>>d_of_add.m>>d_of_add.y;

cout<<"Enter the name of disease:";

cin>>disease;
Roll no 50

cout<<"Enter the date of Discharge:";

cin>>d_of_dis.d>>d_of_dis.m>>d_of_dis.y;

}

 void display()

 {

 cout<<"\nThe name of patient is:"<<name;

 cout<<"\nThe date of admission is:"<<d_of_add.d<<"-"<<d_of_add.m<<"-"<<d_of_add.y;

 cout<<"\nThe name of disease is:"<<disease;

 cout<<"\nThe date of Discharge is:"<<d_of_dis.d<<"-"<<d_of_dis.m<<"-"<<d_of_dis.y;

}

};

class patients_age: public patients

{

public:

int age;

public:

void getdata()

{

patients::getdata();

cout<<"Enter the age of the patient:";

cin>>age;

}

void display()

{

patients::display();

cout<<"\nThe age of the patient is:"<<age;

}

};

int main()

{ patients_age p[3];

for (int i=0;i<3;i++)

{

cout<<"\nPatient no:"<<i+1;

p[i].getdata();

}
Roll no 51

cout<<"\nThe list of all the patients:";

for (int i=0; i<3; i++)

{

cout<<"\nPatient no:"<<i+1;

p[i].display();

cout<<"\n";

}

cout<<"\nThe list of all the pediatric patients (less than twelve years in age):";

for (int i=0; i<3; i++)

{

if(p[i].age<12)

p[i].display();

cout<<"\n";

}

return 0;
 cin.get();

 cin.ignore();
}

Roll no 52

OUTPUT:-

[image: image20.png]
Roll no 53

 PRACTICAL NO:-18 Date
AIM:- Write a program to show the use of Containership in a class.

OBJECTIVE:- The containership is another way of reusing existing code. In this case objects of one class

Are made the members of another class. Suppose A is a class and a is an object of the class. In another Class say B , the object a can be made a member. As a result of this, the code in the class A is reused in the class B as well.In this way the concept of containership is used.

 SOURCE CODE:-
//Program to show the use of containership…..
#include<iostream> //Header file..
using namespace std;

class time

{

int h,m,s;

public:

void get()

{

cout<<"\nEnter the time:";

cin>>h>>m>>s;

}

void display()

{

cout<<"\nThe time now is:\t";

cout<<h<<":"<<m<<":"<<s;

}

};
class date

{

int d,m,y;

public:

time t; //Object of a class…

void get()

{

t.get();

cout<<"\nEnter the date";

cin>>d>>m>>y;

}

Roll no 54

 void display()

{

 t.display();

 cout<<"\nThe respective date is:\t";

cout<<d<<"/"<<m<<"/"<<y;

}

};
int main()

{

date dt;

dt.get();

dt.display();

return 0;
 cin.get();

 cin.ignore();
}
Roll no 55

OUTPUT:-

[image: image21.png]
Roll no 56
 PRACTICAL NO:-19 Date
AIM:- Write a program to implement Object Slicing in a class.

OBJECTIVE:- Object slicing is also an important concept in Object Oriented Programming. If A is a class and B is another class derived from the class A, we can assign an object of B type and an object of A type and this assignment leads to a phenomenon called Object Slicing.

 SOURCE CODE:-
//Program to print the implement Object Slicing in a class……..

#include<iostream> //Header file

using namespace std;
class alpha //Base class
{

protected:

int i;

public:

 alpha() //Constructor

{

i=10;

}

alpha(int e)

{

i=e;

}

};

class beta: public alpha //Derived class
{

 int j;

 public:

beta()

{

j=20;

}

beta(int m)

{

j=m;

}

beta(int m, int n): alpha(m) //Object Slicing

{

j=n;

}
Roll no 57

void display()

{

cout<<"\ni="<<i;

cout<<"\nj="<<j;

}

};

int main()

{

beta b1,b2(30),b3(40,50);

cout<<"\nFor b1:";

b1.display();

cout<<"\n\nFor b2:";

b2.display();

cout<<"\n\nFor b3:";

b3.display();

return 0;
 cin.get();

 cin.ignore();
}
Roll no 58

OUTPUT:-

[image: image22.png]
Roll no 59
 PRACTICAL NO:-20 Date
AIM:- Write a program that creates a binary file by reading the data for the students from the

terminal. The data of each student consist of Roll no., name (a string of 30 or lesser no. of

characters) and marks.
OBJECTIVE:- The binary files are of very much use when have to deal with databases consisting of records. Since the records usually comprise heterogeneous data types, the binary files help optimize storage space and files I/O would be faster when compared to text files. The ofstream provides the member function write(),which is used to write binary data to a file & the istream provides the member function read(), hich is used to read binary data from a file.

 SOURCE CODE:-
//Program to create a binary file…………

#include<fstream> //Header file for file stream
#include<iomanip> //for setw()
#include<iostream>

using namespace std;

class student

{

private:

int roll;

char name[30];

int marks;

public:

void get()

{

cout<<"\nEnter Roll no , Name & marks of the student";

cin>>roll>>name>>marks;

}

void display()

{

cout<<setw(6)<<roll<<setw(7)<<name<<setw(5)<<marks<<"\n";

}

};

int main()

{

ofstream fout; //Object of ofstream in a file

student s;

int i,n;

fout.open("student.dat",ios::binary);
Roll no 60

cout<<"\nEnter the no of students:";

cin>>n;

cout<<"\nEnter "<<n<<" Students details\n";

for(i=0;i<n;i++)

{

s.get();

fout.write((char*)&s,sizeof(s));

}

fout.close();

ifstream fin; //Object of ifstream in a file

cout<<"\nThe contents of the file student.dat:\n";

fin.open("student.dat",ios::binary);

fin.read((char*)&s,sizeof(s));

while(!fin.eof())

{

s.display();

fin.read((char*)&s,sizeof(s));

}

fin.close();
 return 0;
}
Roll no 61

OUTPUT:-

[image: image23.png]
Roll no 62

 PRACTICAL NO:-21 Date
AIM:- Assume that a bank maintains two kinds of accounts for customers, one called as savings

account and the other as current account. The savings account provides compound interest and

withdrawal facilities but no cheque book facility. The current account provides cheque book

facility but no interest. Current account holders should also maintain a minimum balance and if the

balance falls below this level, a service charge is imposed.

Create a class account that stores customer name, account number and type of account. From this

derive the classes cur_acct and sav_acct to make them more specific to their requirements. Include

necessary member functions in order to achieve the following tasks:

a) Accept deposit from a customer and update the balance.

b) Display the balance.

c) Compute and deposit interest.

d) Permit withdrawal and update the balance.

e) Check for the minimum balance, impose penalty, necessary and update the balance.

f) Do not use any constructors. Use member functions to initialize the class members.

OBJECTIVE:- Here we will use the concept of inheritance of Object Oriented Programming. Here the base class is account and the derived classes are cur_acct and sav_acct with their required data members and member functions. First of all the user account type is determined ,if it is current account then the derived class cur_acct is used and if the account type is saving then the derived class sav_acct is used.

 SOURCE CODE:-
//Program to implement the account details of different account types……….

#include<iostream> //Header file..
using namespace std;

class account //Base class…
{

public:

char cust_name[30];

unsigned int acc_no;

int type;

public:

void get_data()

{

cout<<"\nEnter name of Customer:";

cin>>cust_name;

cout<<"\nEnter account no:";

cin>>acc_no;

}

};
Roll no 63

class cur_acc: public account //Derived current account class…
{

protected:

float balance;

float deposit;

public:

 void get_data()

{

account::get_data();

cout<<"\nEnter the balance in your account: Rs";

cin>>balance;

if(balance<1100)

{

 cout<<"\nDue to less than minimum balance you have imposed penalty of Rs 100\n";

 balance=balance-100;

 display();

}

cout<<"\nEnter the amount to deposit: Rs";

cin>>deposit;

balance=balance+deposit;

}

void display()

 {

cout<<"\nNow the balance in your Current account is:\t Rs"<<balance<<"\n";

 }

};

class sav_acc: public account //Derived saving account class…
{

protected:

float balance;

float deposit;

float interest,amount;

int flag;

public:

void get_data()

{

account::get_data();

cout<<"\nEnter the balance in your account: Rs";

cin>>balance;

cout<<"\nEnter the amount to deposit: Rs";

cin>>deposit;
Roll no 64

balance+=deposit;

display();

cout<<"\nEnter 1 if you want to withdraw some amount & if not Enter zero:";

cin>>flag;

if(flag)

{

cout<<"\nEnter the amount to be withdrawn: Rs";

cin>>amount;

balance=balance-amount;

display();

 }

}

void display()

{

cout<<"\nNow the balance in your account is:Rs"<<balance<<"\n";

}

void int_display() //To compute interest…

{

interest=(balance*11)/100;

balance+=interest;

cout<<"\nNow the net balance in your Saving account with interest is:\t Rs"<<balance;

}

};

int main()

{
 account a;

cout<<"\nEnter the type of your account:\n Enter 1 for Current & zero for Saving";

cin>>a.type;

if(a.type)

{

cur_acc c1;

c1.get_data();

c1.display();

}

else

{ sav_acc s1;

s1.get_data();

s1.int_display(); }

return 0;
Roll no 65

OUTPUT:-

[image: image24.png]
Roll no 66

 PRACTICAL NO:- 22 Date
AIM:- Create a base class called shape. Use this class to store two double type values that could

be used to compute the area of figures. Derive two specific classes called triangle and rectangle

from the base shape. Add to the base class, a member function get_data () to initialize base class

data members and another member function display_area () to compute and display the area of

figures. Make display_area () as a virtual function and redefine this function in the derived classes

to suit their requirements.

Using these three classes, design a program that will accept dimensions of a triangle or a rectangle

interactively and display the area. Remember the two values given as input will be treated as lengths

of two sides in the case of rectangles and as base and height in the case of triangles and used as

follows:

 Area of rectangle = x * y

 Area of triangle = ½ * x * y

OBJECTIVE:- Here we will use the concept of inheritance of Object Oriented Programming. Here the base class is shape and the derived classes are triangle and rectangle with their required data members and member functions. The base class will accept the two sides of rectangle in case of rectangle but base and height in case of triangle. A member function display_area() will calculate the areas in each case and display it.

 SOURCE CODE:-
//Program to calculate the areas of different shapes……
#include<iostream> //Header file…..
using namespace std;
class shape //Base class……
{

protected:

double x, y;

public:

void get_data()

{

cin>>x>>y;

}

virtual void display_area()

{

cout<<"The Area of the given shape is:";

}

};

class triangle: public shape //Derived class..
{

 protected:

double area;
Roll no 67

public:

void display_area()

{

area=((x*y)/2);

cout<<"\nThe area of triangle is:\t"<<area;

}

};

class rectangle: public shape //Derived class…..
{

protected:

double area;

public:

void display_area()

{

area=(x*y);

cout<<"\nThe area of rectangle is:\t"<<area;

}

};

int main()

{

triangle t1;

cout<<"\nEnter the base and height of the triangle:\t";

t1.get_data();

t1.display_area();

rectangle r1;

cout<<"\nEnter the length & breath of a rectangle:\t";

r1.get_data();

r1.display_area();

return 0;
 cin.get();

 cin.ignore();
}

Roll no 68

OUTPUT:-

[image: image25.png]
Roll no 69

PRACTICAL NO:-23 Date
AIM:- Write a program to implement Dynamic Binding.

OBJECTIVE:- Dynamic binding means the code associated with a procedure call is not known until it is executed. It is a way of connecting one program to another that is to be executed whenever it is called. It is associated with polymorphism and inheritance. Polymorphism allows single object to invoke similar functions from different classes. The action taken by the program is different in all the classes. During execution, code matching the object under present reference will be executed.

 SOURCE CODE:-
//Program to implement dynamic binding……..
#include <iostream> //Header file….
using namespace std;

 class Base

{

private:

 int num1;

 public:

 Base(int n)

 {

 num1 = n;

 }

 virtual void print()

 {

 cout<<"Base Class: "<<num1<<endl;

 }

 void identify()

 {

 cout<<"This is the Base class function."<<endl;

 }

};

 class Derived: public Base

{ private:

double num2;

 public:

 Derived (int n, double d): Base(n) //Object Slicing…
 {

 num2 = d;

 }
Roll no 70

 void print()

 {

 cout<<"Derived class: "<<num2<<endl;

 }

 void identify()

 {

 cout<<"This is the Derived class function."<<endl;

 }

};

int main()

{

 Derived d(1, 20.0);

 Base *pbase = &d;

 pbase->print(); //dynamic binding

 pbase->identify(); //static binding

 return 0;
 cin.get();

 cin.ignore();
}
Roll no 71

OUTPUT:-

[image: image26.png]
Roll no 72

