CONTENTS

Praface v

Introduction

1. AN OVERVIEW OF OBJECT-

ORIENTED SYSTEMS
DEVELCPMENT 3
1.1 Introduction 3
1.2 Two Orthogonal Views of the

Software 4
1.3 Object-Orlented Syslems

Devalopment Methodology 4
1.4 Why an Object Orfentation? 5
1.5 Dvarview of the Unified

Approach fi
1.8 Organization of This Book &
1.7 Summary i1

2. OBJECT BASICS 13

21 Introduction i3

2.2 An Object-Orlented Philosophy 14

24 Objects
2.4 Objects Arg Grouped in Classes

2.5 Attributes: Object State and

Properties
2.6 Object Behavior and Methods
2.7 Objects Respond 1o Mossages
2.8 Encapaulation and Information
Hiding
2.9 Class Hlerarchy
29,1 Inherilance
29,2 Multipl= Inheritanoe
2.10 Polymorphism
2.11 Object Relaticnships and
Associations
2011 Consumer-Producer
Association
2.12 Aggregations and Object
Contalnment
2.13 Case Study: A Payroll Program
2.13.1 Siructured Approach
2.13.2 The Object-Driented
Approach

20
a1
23
24
£

3
24

28

k1

vili contents

2.4 Advanced Topics L i) 4.2 Rumbauwgh et al's Object
2.14.1 Ohbject and Tdentity L Madeling Tlﬂlhl'ﬂﬂlll ﬁ.j
2.14.2 Sttic and Dynamic 431 The Qljeet Model 3
Binding 4 412 The OMT Dynamic Model 63
2143 Object Persistence EE| 4.3.3 The OMT Functional Model &4
2144 Mets-Clasées 14 4.4 The Booch Methodology a5
215 Summary 44 44.1 The Hacl:-m Developmem "
3. OBJECT-DRIENTED SYSTEMS ;
DEVELOPMENT LIFE CYCLE n 4.4.2 The Micmo D:'-'cJu]:-mrn[&
2l ~ 4.5 The Jacobson et al.
3.2 Tha Software Developmeant Methodologiss 6
% #.5.7 Use Cases 63
3.3 Building High-Quality Software 42 452 Object-Oriented Software
34 ﬂb]qﬂ'l-ﬂﬂ-ll'lﬂ: ﬁym: Engincering: Ohjectory 7il
Drive :I B ' Cam 4.53 Uhpect-Onented Busingss
P & I o Engineering Ti
341 Obpeot-Onented Analysis— 1
Use-Case Diriven 45 XA m' e
342 Ohject-Orented Design a7 : Nongengrative P i n
4.3 Prototyping w 462 Patterns Template 7
344 Implementation: Component- 463 Antipatierns T
Hioa LeiClopment e 464 Capluring Pitterns 7%
345 Incremental Testing 53 47T Era \ e
e Ty o 4.8 The Unified Approsch 7
w8 Summary 5 481 Object-Oriented Analysis 79
4832 Object-Chrienied Design B0
4,83 lrerative Development and
Contnuous Testing £0
43,4 Modeling Based on ilie
Unified Modeling Language 80
Methodalogy., Modeling, and 485 The UA Proposed
Unilied Maodelinng Languane Repository 1
ECT-ORIENTE 4.5.6 The Layered Approach to
X ::::“nﬂ;m“n &1 Software Development L
4.1 Introduction: Toward 486, The Rusingss Layer i3
Unification—Too Many 48682 The Uhser Intecface {View]
Methodologles Bl Laver iEq
4.2 Survey ol Some of the Object- 4863 The Access Layer i

Oriented Methodalogles 62 4.9 Summary 4

5. UNIFIED MODELING LANGUAGE 79 5002 Mate 7
51 Introduction 89 5.10.3 Stereatype 17
5.2 Static and Dynamic Models 90 5.11 UML Meta-Modol 17

521 Swtic Model o) 512 Summary i
A2 Dhnamic Model 9i
5.3 Why Modaling? 91
54 Introduction to the Unified
Modeling Language a2
5.5 UML Disgrams % [PANT-THREE — —— —_ — |}
5.6 UML Class Dingram ”fﬂﬁienl-ﬂtiemﬂd Analysis:

5.6.1 Class Notation; Static Use-Case Driven

Structune £
5:6.2 Object Dizgram 94 6. OBJECT-ORIENTED ANALYSIS
a0,3 Class - Interfuce Notation 05 PROCESS: IDENTIFYING USE .
5.64 Binary Association Molation 6% CASES 125
3,65 Association Role b5 6.1 Introduction 125
5.6.6 Cualifeer 04 6.2 Why Analysis Is a Difficult
5.6.7 Multiplicity o Activity it
5.6.8 OR Association a7 63 Business Object Analysis:
A6.9 Association Class L wwmg the Business i
S, 10 M- Associati N
A5y Asmacition " 6.4 Use-Case Driven Object-
.6:11. Aggregution ang Oriénted Analysis: The Unified
Composition Qi] : 178
£y =iy ﬁm:—almnun il €5 Business Process Modaling [Fa
UND:Ch i E i 6.5 Use-Case Modal 120
5.8 UML Dynamic Modaling 103 :
581 ML rx oo Di s 6.6.1 Use Cases under the
oy s Microsiops 131
L8 L] UML Sequrnee Diggrani bikd £6.2 Uses and Bxteods
FELZ UML Coltaboration Dingrom: |05 Associations EE!
342 UML Statachen Lingram 108 6,63 Mdentifying the Actbes 34
283 UML Activity Diagram i 664 Guidelines for Finding Use
3.8.4 Implemeitation Diagrams |11 Cases 136
5841 Component Diggram e £.6.5 How Detailed Must 5 Use
5842 Deployment Elagnrm 112 Cuse Be? When 1o S10p
5.9 Model Management: Packages Decomposing and When
and Model Organization 14 to Conlimug | 34
510 UML Extensibility 115 666 Dividing Use Cases into
5,001 Mode! Constraims: and Packiges 137

Comements 16 66,7 Maming u Use Case |37

X COMTENTS

6.7 Developing Etfective
Documentation
6.7.1 Organizing Conventions
for Documentation
6.7.2 Cuwdehnes for Developing
Effective Dclimentation
6.8 Case Study: Analyzing the
ViaMat Bank ATM—Tha
Use-Cage Driven Process

6.8.1 Background
£.8.7 Tdentifying Actors and Uise

Cages for the ViaMNet Bank
ATM Syitem
6,83 The VieNet Bank ATM
Syatems” Packipes
8.8 Summary

7. OBJECT AMALYSIS:
¢ CLASSIFICATION
7.1 Introductlon
7.2 Claasilications Theory

7.3 Approaches for identitying
Classes

7.4 Noun Phrase Approach

T4.1 Tdentifving Tentative
Clagses

742 Sclecting Classes from
ihe Belevant and Fuzzy

. Calegories

TA3 The YViaNet Hank ATM
System: Identifying Classes
by Using Noun Phrase
Approach

T.4.4 lnateal List of Moun Phrases:
Candidinte Classes

745 Beviewing the Redundant
Clasges and Building a
Common Yocabulary

TA0 Reviewing the Classes
Containing Adjectives

138

139

138

[0

140

B

L51
151
52

154

15

155

1346

156

154

159

7.4.7 Reviewing the Postible
Altnbuites

748 Reviewing the Class
Purpose

7.5 Common Class Pafterns

Approach

7.5.1 The ViaNet Bank ATM
System: Identifying Clastes
by Using Common Class
Patterns

7.8 Use-Case Driven Approach:

Identifying Classes snd Thelr

Behavlors through Ssquance’

Collaboration Modeling

T.6.1 Implementation of Scenarios

762 The ViaNet Bank ATM™
Syatems: Decompozing 4
Use-Caze Scenario with a
Sequence Diagrom: Ohject
Behavior Analysis

7.7 Classes, Responsibilities, and
Collaborators.

7.7.1 Clpsges, Besponsibilinies,
and Collaborniors Process
7.7:2 The ViaNet Bank ATH
System: Identifying Clhsses
by Using Classes,
Respoasibilites, and
Collaborni ors
7.8 Haming Classes
7.8 Bummary

8. IDENTIFYING OBJECT
AELATIONSHIPS, ATTRIBUTES,
AND METHODS

8.1 introduction
8.2 Assoclations
B30 ldentifying Associalions
8.2.2 Guidelines for Identifying
AEsociulions
.23 Common Associntion
Patierns

164

10

162

1683

121

16

165

170

i |
I
4

77
I
178
1Y

i7e

I

824 Eliminate Unnecessary
Aszociaiions
B.2 Supar-Sub Class
Rotationships
B3, Cuidelines for Idennfymg
Super-Sub Relationship. a
Creperalization
B4 A-Part-of Relationships—
Aggregation
§.4.1 A-Pan-of Relationship
Patterns
B.5 Case Study: Relstionship
Analysis for the ViaNel Bank
ATM System
£.5.1 Identifying Clagses’
Relationships
B:5.2 Deweloping a UML Class
Diagram Based on the
Use-Case Analysis
£.5.3 Defining Association
Relationships
8.54 Defining Super-Sub
Relationships
B.5.5 Hdentifying the Aggregation/
a-Part-of Relationshup
8.6 Class Responsibility:
! identifying Atiributes and
Maihods
8.7 Class Responsibliity: Defining
Aftributes by Analyzing Use
Cases and Other UML
Diagrams
8.1.1 Guidelines for Defining
Aftribaites
8.8 Defining Attributes for Viahet
Bank Objects
48,1 Defining Atributes for the
BankClient Class
482 Defining Attributes for the
Account Class -
£.8.3 Defining Aunibutes for the
Trangsacnon Clizs

contelTs X

B.8.4 Delining Aunbutes for the

iRt AThMachine Class i
8.8 Object Reaponsibility: Methods
181 and Messages 1)

B9.1 Defining Mathods by
Analyzng UML Dingroms

iR anid Use Cnses 192
B.10 Defining Methods for ViaMNet
t82 Bank Objects 192
: 8.10.1 Defining Account Class
LE Chperations 2
B2 Drefiming BankClicnt
i Cliss Uiperations [93
£.10.3 Defining Checking Accouni
4 Ch.ln_ Olperafioms 193
8,11 Summary |94
|54
L BART-FOUR. — . _______J
ws: MW .
Dhject-Driented Desion
1846 X

9, THE OBJECT-ORIENTED DESIGM
PROCESS AMD DESIGN AXIOMS |90

187
8.1 Introduction 1
~°9.2 The Object-Oriented Design
1EH Process)
483 Object-Oriented Design Axioms 207
8.4 Corollaries 204
169 94,1 Corollary 1. Uncoupled
Design with Less
- Information Conlent M
R4 1.1 Coupling 2
19 0.4.1.2 Colieso s
942 Corollary 2. Sibgle Purpose 206
190 9,43 Corollary 3, Large Numbes
of fumpler Clisses,
i 4 Feusability 206

S Corollary 4. Smong Mappmg 207
a1 845 Corollary 5. Standardization 208

%I contents

046 Corollory 6. Designing 10,74 Refiming Atributes for
with Inhertonce i the ATMMachine Class 224
R4S) Achirving Multiple Inkeripmioe 10.7.5 Refimng Attributes for
in o Xingle Infieritance the Checking Account
Syxtem 21 Class 224
Qa2 Avoiding Inheriling 10.7.6 Refimng Anrbutes for
fnapprapriee Behaviee I the Savings Acconn
8.5 Design Patterns 212 Class 24
9.6 Summary 314 - 10.8 Dealgning Methods and
Frotocols 225
108 Design Issves: Avonding
10. DESIGHNING CLASSES 7 Design Pitfulls 116
10,1 Introduction 217 10,82 UML Operation
: - -
10.2 The Object-Orlented Design FREARITAOn B
Philosophy N7 10.8 Designing Methods for the
10,3 UML Object Constraint ViaMet Bank Objects 117
Language 118 1091 BankClient Class
10.4 Designing Classas: VeriyPaasword Muthiod: 228
The Process eAL) 10.9.2 Account Class Deposit
105 Class Visibility: Designing Methiod 224
Wall-Defined Publlc, Privats, 1093 Aceount Class Withdrow
and Protécted Protocols g Method 2
10.5.1 Provate and Protecied 1G94 Accouni Class
Protocol Layers: Tntermal 223 CreameTransaction
10.5.2 Public Protocol Layer; Method 29
Extemal a3 | 10.9.5 Checking Account Class
% 10.6 Designing Classes: Refining Withdraw Method 2
Attributes r#d | 1056 ATMMachine Clazs
10,60 Attribute Types 227 Operations 230
1062 UML Auribute 10.10 Packages and Managing
Presentation 277 Classes 20
10.7 Rafining Attributes for the 10,11 Summary 132
ViaMe! Bank Objects ek
1071 Refiniog Annbutes for
the BankCliem Class 23 11. ACCESS LAYER: OBJECT
10.7.2 Refining Astributes for ’ STORAGE AND OBJECT
the Account Class 25 INTERDPERABILITY a7
LT3 Refining Arnributes for 111 Intreduction 37
the Trangaction Cliss IH 11.2 Object Store and Parslstence:

Problem 10,1 23 An Ovarview 233

11.3 Database Management

Systams 234
[1.3:0 Datibase Views 24
11.3.2 Dawabase Models Al
T Hierrchical Model 240
T E2.2 Network Model adl
303 Reldrional Moidel 241
1133 Dainbsse Inteiface 47

23T Dabebase Soheimg
ot Ehefimivion Langrige 242

222 Do Manipulation
Langrage and (furry

Crpathiliries 243
11.4 Logleal and Physical Databass
Organization and Access
Control 4
1141 Shareahility and
Transaotions 3
11.4.2 Concurrency Palicy 244

11.5 Distributed Dalabases and
Clhent-SBerver Computing 245
151 What Is Client-Server

Computing? 245
1152 Distiibuted and
Cooperative Processing 248

11.6 Distributed Objects Computing:
The Mext Generalion of Client-

Sorver Compuling 250
FLG1 Common Object Bequest
Broker Archileciure 251
1162 Microsoft's
Active X/DCOM 242
11.7 Object-Orlented Database
Management Systems:
The Pure World 243

TET.] Object-Dirignted Databrices
wersus Traditional
Dratabasesd 154

cowtents Xkl

. 11.8 Object-Relational Systems:
The Practical World
1LE] Object-Relation Mapping
11.E2 Tahle-Class Mupping
11.83 Table-Multiple Classes
Mapping
1184 Table-Inherited Classes
Mapping
I1LES Tables-Inherited Classes
Mappang
| FE.6 Keys for Instance
Mavigalion
11.8 Multidatabase Systems
1121 Open Datobase
Conmigctvity:
Multidatubase Application
Programming Interfaces.
11,10 Designing Atcess Layer
Classes
11,3021 The Pricessy
1141 Case Study: Dasigning tha
Access Layer for the ViaMel
Bank ATM

11111 Cresting an Access
Class for the
BankClient Class

11,12 Summary

,12. VIEW LAYER: DESIGNING
' INTERFACE OBJECTS

12,1 Introduction

12.2 User Interface Deslgn s a
Creative Procesa
12.3 Designing View Layer Classes
14 Macro-Level Process:
Ideniifying View Classas by
Analyzing Use Cases
+ 12.5 Micro-Laval Process
1251 U Design Rule 1.
Making the Interface
Siumple

25
256
b1

L

xiv contenTs

ias

T
1248

12.5.2 N Design Rule 2.
Making the Interface
Transparent dnd Nitural

[2.5.3 U Design Baule 3,
Allowing Uszers to Be in
Contral af the Saltware

FERA Make phe Iiterfisce

Fovpreing
FLEED Make the Iiterfrce Viswl
253N Pranide Invmediate
Feedback

(2.5 34 Avard Modes
TL5 35 Make the fnrerface
Consisfent

The Purpose of a View Layer

Interface

1261 Guidelines for Designing
Ferma pd Data: Entry
Winklows

12,62 Guidelines for Dedigning
Dialog Boxes and Error
Messages

12.6.3 Guidelines for the
Command Buions.
Layout

1264 Guidelines for Designing
Application Windeows

12.6.5 Guidelines for Using.
Coldrs

1266 Guidelines for Using

Fomty
Prototyping the User Interface

Case Study; Designing User
Iinterface for the ViaMNet Bank
ATM

1Z28.1 The View Layér Mocro
Process

1282 The View Layer Micm
Process

1283 The BankClientAccessT)]
Intertnes Ohject

20

'
29)

] |
28

gy

i

o
B2

&

309

12.8.4 The MainUl Objest
Interface

12.5.5 The AccouniTransactionll]

Inrerface Obsject

12.8.6 The CheclangAccountL]

and SavingsAccountLil
Inferface Objects

12,87 Defiming the Interface
Behavioe

287 Ideinifving Eventy and

My

L

31

3l

Actions for the BankCliemnidc-

cersUF Imerface Ohfece
(2872 foemtifving Enenly cnof
Actinns for the Mainll]
freferfsre Ciljecs
128710 tdeneifeing Evenrs and
Actions for the Savings.

33

n3

Accorwpllt Inrerfoce fjeer 314

{2874 ldentifiing Eventd el
Actions for the Accoimb-
Trmnsacmea b faterfiuce
LT

12.8 Summary

1
N7

PART FIVE

Software Quality

13, SOFTWARE QUALITY

ASSURAMCE
133 Introduction

- 13.2 Quality Assurance Tesls

13,3 Testing Strategies
13.3.1 Black Box Testing
13:3.2 White Box Testing
13:3.3 Top-Down Tesung
1334 Bonom-Lp Testing

. 13.4 Impact of Object Orientation

on Testing

[34.1 Impact of Inheritance in
Testing

A]

26
28
s
eF
¥
330

EE

L |

INTRODUCTION

Th..' ohjective of Part 115 (o provide an overview of object-orented systems
dovelopment and why we should study it. In this pant, we also Jook at ob-
sect basics.and the systems development lite cycle. Part | consists of Chap-
ters |, 2, and 3

An Overview of Object-
Oriented Systems
Development

Chapter Objectives

T shedyl be able o deflinge snd umleritand
= The objeci-oricaind phibisophy and wiy we aood 1w
:l.:u.!:.- I,

= The unified sppmach

1.1 INTRODUCTION

Software development is dynamic and always undergoing major change. The
meethods we will ise in the future no doubt will differ significantly from those cur-
rently i praciice, We can anficipate which methods and tpols are pomng bo suc-
cesd, bul we cannot predict the future. Factors other than jusi tec¢hnical superior-
ay will likely determine which concepts prevail

Todsy & vait number of toold and methodologies are available for syitems de-
welopment. Svefems developsment relers 1o all activities that go into. producing an
mformation systems solution. Systems development activities consist of sysiems
snalysis, modeling, design, implementation, testing, and maintenunce. A soffware
development methodology is a'series of processes that, if followed, can lead 10 the
development of an application. The software processes describe how the work 15
i+ be carried out to achieve the onginal goal bated on the system requiremonis
Furthermire, each process consists of 4 number of sleps and rulex thar should be
performed during development. The software development process will continue
to exist as long as the development system §s in operation,

Thus chapter provided dn overview of object-orented systems development and
descusses why we should study if, Fuarthermaore, we study the unified approach,
which 15 the methodofogy used in thik book for leaming about object-oriented sy«
tems development,

& PART ONE: INTRODUCTION

1.2 TWO ORTHOGOMNAL VIEWS OF THE SOFTWARE

Ohjeci-orented systoms developrment methods differ from wraditional developmeni
techniques in that the traditional technbques view software as u collection of pro-
grams (or functions) and isolated data. What is a program? Niklaos Wirth [8], the
iventor of Pascal, ssms it up eloguently in his book entitled, interestingly enough,
Algorithmy 4 Data Structiings = Proprams: A software sysiem i3 & et of mech-
anisms for performing certain action on certain dita.”

This meéans that there are te different, vet complementary ways (o view sofi-
wire construction: We can focus primanly on the functions or primarily on the
data. The hzan of the distinction between wraditional sysiem development method-
ologies and newer object-oriented methodelogies lies in thelr primary focns, where
the traditional approach focuses on the functions of the systef—What 15 it do-
ing*—ohject-oriented systems development centers on the ohject, which combines
dota and functionality. A5 we will see, this seermingly simple shift in focus radi-
cally changes the process of software development.

1.3 OBJECT-ORIENTED SYSTEMS DEVELOPMENT METHODOLOGY

Dhject-onented development offers o different medel from the waditonal softwane
development approach, which ks based on functions and procedures. In simplified
Tferms, objeci-oriented systems development =8 way to develop software by bilid-
ing self-coniained modules or objects thit ¢an be exslly replaced, medifed, and
rewsad. Furthermore, it encourages o view of the world is-a syaem of cooperative
and collabomting objects. In an object-onented environment, software is & collec-
tien of discrele objects: that encapsolate therr datn a8 well @ the functionality (o
midel real-warld “ohjects” An object orentation yields imponant benefits 1o the
practice of software - consruction. Each object has attributes {dota) and methiods:
i functions), Obyects are grovped inlo classes; 1n ohject-vrienisdl terms, we discover
md describe the classes mvolvesd in the problem dormmin,

In an object-orienied system, everything is an object and each ohpect i respon-
sible for nsell, For example, every Windows appliconion neads Windows objecis
that can open themselves on screen and either display something or accept inpud.
A Windows abject is responsible for things like opening, sizing, and closing itself,
Frequently, when a window displays something, thal something also i an object
(a char, for example). A chart object 15 responsible for things like mumtaining s
dota and labels and even for drawing fiself.

The obiect=oriemed emvironment emphasizes oy cooperanve philesophy by
allocating 1asks among the objécts of the applications. In other words, rither
than wrting & ot of oode 1o do oll the things the have 10 be done, you 1end o
ereale a |ol of helpers that take on an sctive role, a spirit, and thet form 8 coms
mianity whose interactions: become the appheation, Tnstead of :saying, “System;
compute the payroll of this emploves,” vou 1zl the employes sliject, “compule
your - payroll,” This has o powerful effect on the way. we approach software
development,

CHAPTER 1 AN EVERVIEW OF CEBUECT-ORIENTED SYETEMS BEVELOFUENT 5

1.4 WHY AN OBJECT ORIENTATION?

Object-oriented methods enable us 1o create sets of objects that work together syn-
ergratically o produce software that better model their prohlem domains than sim-
ilar systems produced by tradinonal technigues, The systems are easier to adapt to
changing requirements, easier to muintain, more robust. and promote. greater de-
sign and code rense. Object-oriented development allows us 16 create modules of
functionality, Once abjects are defined. it can be wken Tor granted that they will
perform their desired functions and you can seal them off in your mind like black
boxes. Your anention 45 8 programmer shifts to what they do rather than how they
do i1, Here are some reasans why object orientation works [3-7);

* Higher level of abstraction. The top-down approach supperts abstraction ot the,
function level: The object-oricnted approsch suppons abstraction a1 the object
level, Since objects encapsulate both duta (attributest and functions (methods),
they work at o higher level of abatsiction, The development cun proceed st the
object level and ignore the rest of the syatem for as long as necessary. This
miakes designing, coding, testing, and maintaining the system much simpler.

* Seamless mansition among different phases of software development, The tads-
tional approach 1o seftware development required different styles and method-
ologies for each step of the process. Moving from one phase to another requires
a complex transition of perspective betwesn models that almost can be in dif-
feremt worlds. This transition not only can slow the development process but also
tncreases the size of the project and the chance for erors introduced in moving
from one language o another. The object-onented approach, on the other hand,
esgentinlly uses the same language to talk about analysis, design, programming,
and database design. This seamless approach reduces the level of complexity and
redundancy and makes for clearer, more mbust system development.

* Encouwragement of good programeing fechnigues, A cliss in an object-onented
system carcfully delineates between its interface {(specifications of wihar the class
can dod and the implementation of that interface (how the class does what it
does). The routines ond: attributes within a class are held weéther tghtly, 1n 2
properly designed system, the classes will be growped into subsystems but re-
miain ifndependent; therefore, changing one class his no impact on other cinsses,
and 5o, the impact is minimized. However, the object-orented approach is not a
panaced; nﬁthm;g is magical bere that will promote perfect design or perfect
cinde. But, by mising the level of abstraction from the function level to the ob-
ject level and by focusing on the real-world aspécis of the svitem, the object-
ortented method tends to promote clesrer designs, which are ensier to imple-
ment, and provides for better overall commuonication. Uamg objeci-oriented
lunguage is not strictly necessary to schieve the benefits of an object orientation.
However, an ohject-oriented tanguage such as C+ +, Smalltalk, or Javo adds
support for ehject-onented design and makes it ensier 1o produce more modular
and resisaibsle code vim the concept of cliss and inheritance [5].

= Promotion af rensability, Objects are reusable becanse they are modeled directly
out of & real-world problem domain. Each object stands by itégll or within a
small sircle of peers (olher objects). Within this framework, the class-does not

6 PAAT OHE: INTRODUGCTION

concem itself with the rest of the system or how i is going to be nsed- within a
particular system, This means that classes are designed genencally, with reuse
as & congart 'I:nci‘.gmmd goal. Furlhermore, the ohject orientation sdds. infieri-
tance, which is.a powerful techniquie that allows classes to be bullt from each
pther. am! therefose, only differences and enhancements belween the classes
need 10 be designed and coded. All the previous finctionality remiaing and can
be reused without change.

1.5 OVERVIEW OF THE UNIFIED APPROACH

This book is organized around the nified approach for a better understanding of
ahject-oniented concepis and system development. The snifled approcch (UA) i a
methodology for software development that is propoded by the author, and wsed in
this book. The UA, based on methodologies by Booch, Rumbaugh, and Jacobson,
tries t combine the best practices, processes, and guidelines along with the Object
Managemen: Group's unified modeling language. The uniffed modeling language
|I.FML:| {a & set of notstions and conventions used (o describe and model on appli-
cation, However, the UML does not specify a methodology or what steps to follow
o develop an application; that would be the wsk of the UA. Figure 1-1 depicts the
essence of the unified approach. The heart of the UA s Jacobson's use case. The
e cose represents & tvpical inlefaction between o ser and A computer sysiam o
capture the users” goals and needs. In its simplest nsage, you caprure 4 use case by
talking to typical users and discussing the varous ways they might wani to use the
gystem, The use cases are entered into all ather activities af the LA

The main advanisge of an chjeot-onented tystem is thal the class tree iz dy-
namic and can grow. Your function as a developer th an abject-oriented environ-
ment 1t to foster the growth of the class tree by defining new, more specialized
lasses 10 perform the tasks yoor applications require, After your first few projects,
you will sccumulate @ repository or elass library of your own, one that performs
the operations your applications most. often require. At that point, creating addi-
tional applications will require no more than assembling classes from the class li-
beary. Additionaily, applying lessons leamed from past developmental efforis i fu-
wre projects will improve the quality of the product and redoge the cost and
development time,

Thiz book uses & layered architécture to develop applications. Layered archi-
fecture is an approach to software development that allows s (o create obiects this
represent mngible efements of the business independent of how they:are repre-
sented to the user through an interfisce or physically stored in a database. The lay-
ered approach consists of view of user intesface, buginess, and access layers. This
approach reduces the interdependence of the user interface, datibase access, and
business control; therefore, it allows for a more robust and flexible system

1.6 ORGANIZATION OF THIS BOOK

Chapier 2 intriduices the basles of the object-oriented approach and why we should
study it. Furthermare, we leam that the main thrust of the ohjeci-onemed approach

ety (s wurmstacen (Chip A Apphy e axwmms i dosign slasm,
: “hm-ﬁh:mil;lﬁh:m! % Mhnﬁim.
w3 prosscols (0 hapes B
e
e ;ﬂ e
‘T 6l ithuary
"'H-h-mihﬂrl p— H13 :ﬁuh-d
ull—l—g_-.- -0 proincoly by uiilizeg 1AL
q-—-m-r-r sty diagram for
BT PR T Hmamryy procen modessg reprEerniaci ol paedeal”
s i b by gy T
Flevalop e {E Tapad & ol A Bl i el
I"'|I|‘I|l.n'|'Ih'.'-Ellliill-ll : %g , ﬁﬁm
hlm--T 7 . 62 Brmp Areuppl§
o ansowm |
draumEmRsen
I'r Mg the e Layes {Chagtir | 1y
T Civaks sl misine Tt ¢ Links
T Defaa
mrae clarses
i T --:uuhd-\
147 Elisminame meitosd il
i hewne

-

wirw la d-n-lill-'hqiﬂ' L
e prextenn — el fang vicem lves slcn Iy e B

i

',-_mn'm'.
i i i - =
B Uncabality sl warr dadiafoc s tiwismg (Chipis 143 T sdimmmmm
£ L
-
'ﬂ-l-:l-l 4 ‘-.m
FIGURE 1-1
Thnp unifind approach romd mnp

L AHARSCEIATT SWELSAE QA DNINERLENG0 S0 MIINLIAD MY || WL HD

B panT OHE: INTRODUCTION

5 to provide @ sen of objects that closely reflects the underlying application. For
example, the uier who needs to develop o financial application could develop it in
a financial language with considerably less difficulty. An object-onented appranch
allows the hase conceprs of the language 10 be extended to include ideas closer 1o
those of s application. Yoo cun define 34 new data Type (object) in terms of an ex-
iting dita type until it appesrs that the language directly supporis the prmitives
of the application. The real advantage of using an object-onented approach is thid
youi o buikd on what yoo-already hive

Chapter 3 explains the object-ongnted syslem development life cycle (SDLC),
The eqsence af the saftwane process i (he transformation of nsets” needs in the ap:
plication domain imo & software solution that 15 executed m the implementation
domain, The concept of use case or g2t of scenarfos can be 3 valuable tool Tor un-
derstandding the users’ nesds. We will leam that an object-oricnied approach re-
quires & more Agorous process up front to do things right. We need to spend more
time gathering requirements, developing o requirements model, developing an
analysiz model, then twming that into the design model. This chapter conaludes
Part 1 (introduction) of the book.

Chapter 4 is the first chapter of Part 11 (Methodology, Modeling, and Unified
Modeling Language). Chapter 4 looks at the current trend in objeci-oricnied
methodologies, which is toward combining the best aspects of today™s most pop-
ular methods, We also 1ake a closer Iook at the unified approgch,

Chapier § describes the unified modeling linguage in detail. The ML merges
the best of the notations developed by the so-called three amigos— Booch, Rum-
baugh, dnd Jacobson—in their attempt to unify their modeling efforts. The unified
modeling lanzuage onginally was calied the unified mufiod (UM} However, the
methodologies that were an integral part of the Booch, Rumbaigh, and Jacobson
methods were separared from the notation; and the unificaton effors of Booch,
Tncobson, and Rumbaigh eventuully focused more on the graphical modeling lan-
guage and its semantics and kess on the underlying process and methodelogy. They
sam up the reason Tor the name 38 Tollows:

Thee UMIL 15 imeisded i be-a universal Tangunge for modelimg systeme, meantig el i
ean express models of many diffesent kinds and purposes, just s & programmdsg ben-
guages or a nafurnl langoeage can be asod in many difforont ways, Thus, 2 single univer-
&l process for all ssyles of developmient did nok seem possible or even desirable: what
worrks for a shrink-wrapped software project is probably wrong for a one-of-2-kind glob-
ally distributed, haman-critical family of symems. However. the UML can be wsed o
expres the artifaots of all of thede different processes, anmely, the models that are: pro-
duced. Dur move b the LIML docs mof mean that we are igroring the issued of process,
Inndeed; the ML assumes & process thnt s ase cose doven, architecturg-contered, iter-
ative and incremental. It is our obisrvation that the detnils of this general development
process masl be adapted to the particular development culture or application dommin of
a spetific orgunization. We' are alsoe working on process issues, but we have chosen lo
separate the modeling langunge from the process. By making the modeling language and
its process nearly independend, we therefoce give users and other methodolagsts con-
siderable degrees of frecdom 1o it a specific process yer still we o common langnage

CHAPTER 1: AN OVESVIEW OF OBJECT-ORIENTED SYSTEMS DEVELOPMENT B

of eapreasion. This is ood unkike bluepnnts for uildings; there i3 5 cammenly under
shooid language for blueprings, bt there are o number of different ways 10 build, de-
pending upon e nature of what (8 being birilt and wha i doing tie building. This i why
we sy thal the UML i essentinlly the langusge of blusprints for sftware. [2. p. 5]

The UML has becoms the standand notation for objéct-oriented modeling sys-
sems. Ibis an evolving notwtion that i still under development. Chapter S conclides
s part of the book,

Chapter 6 s the first chapier of Pan 101 {Ohject-Oriented Analysis: Use-Case
Diriven). The goal of object-orienied analysis is 1o first undérstand the domain of
the problem and the system’s responsibilities by understanding how the users use
or will usé the system. The 'main task of the analysis is 1w eaplure a complete. un-
smbiguons, e consistent picture of the requirements of the system. This is ac-
complished by constructing seversl models of the system. These models concen-
male on describing what the system does rather than bow it does it, Scparating the
sehavior of a system from the way il is implémented requires viewing the system
fronm the users” perspective rather than that of the machine. This analysis is focused
on the domain of the problem and concemed with externally visible behavior [1].
(Mher activities of object-oriented analysis are 1o identify the objects that moke up
the system, their behaviors, and their refstionships. Chapler & explains the object-
orented analysis process and provides a detwiled discussion of use-case driven
chject-onented analysis, The use case is 8 ypical interaction between a user and
& compuiier system utilized to capture users” goals und needs. The use-case mode]
represents the users’ view of the syitem or the usérs' nieeds. In ity simplest usage,
vou captisre # use case by tulking 1o typical users and discussing the various things
they might want 10 do with the sysiem. The Hean of the UA {5 the Jacobson's tse
cxie, The use cases are a pant of all ether activities of the UA (see Figure |-1).

The masn activities of the object-oriented analysis are to identify classes in the
sysdem. Finding classes s one of the hardest activities tn the analysis. There iz no
vach ahing a8 the perfect class siructure or the right set of objects. Nevertheless,
several techmgues, such as the nse-case driven approach or the noun phrase ond
other classification methods, can offer us guidelines and peneral rules for idemi-
fying the clusses in the given problem domain. Funhermore, identifying classes is
an terafive process; and us you gain more experience, you will get better at iden-
uiying classes, In Chapier 7, we study four approaches to identifying classes: the
aoun- phrase, clss categorization, use-case driven, and class résporisibilitiés col-
Liborubion approaches,

In an objrct-onemed environment, objects ke on an active mle in o system.
Theie objects do not exist in isolatton but interset with each other. Indeed, their
ateractions and relattonthips become the application, Chapier § describes the
suidelines for identifying object relationships, stiributes, and methods. Chapter 8
concledes the object-onented analysis pan of the bowk,

Chapter @ is the ferst chapter of Pat IV (Object-Cricnted Design). In this pan
of the bouk, we leam how to elevale the analysis model into sciual objects that ¢an
perform the required task. Emphasis is shified from the application domain o im-
plementation. The classes identified during analysis provide a framework for the

10 paRT OKHE: INTRODUCTION

design phase. Object-oniented design and object-onented mnalysis are distint dis-
ciplines, but they tre intettwined as well. Objeci-oriented development s highly
ineremental: in other words, you start with objeci-oriented analysis, model it cre-
ate an object-oriented design. then some more of cach. again and ugain. gradually
refining and completing the models of the system. Part IV describes ohject-orented
design, Cther activities of object-orented design are the user interface design and
prototype and the design of the database access, Chupter Y explains the object-
ariented design process and desigh axioms, The main objective of the axiomutic
approach is 16 formalize the design process and assist in establishing a scentific
foundation for the object-orenied design process; 50 &% lo provide & fundemental
basia of the ereation of sysiems, These guidefines, with incremental and evoli-
tionary stylex of softwane development. will provide you powerful way for de-
SIMIng sysems.

In Chapter 10, we book at guidelines and approaches that you can use to design
ohjects and their methods. Although the design concepts 1o be discussed in this
chapter are general, we concentrite o designing the business objects. Chapter in
deseribes the first step of the ohject-onented design process, which consisis of ap-
plying design axioms 1o design objects and their attribates. miethods, associptiong;

structures, and protocols.

Chapter 11 introduces issues regarcing object storage. relational and object-
prienled database management systems, und object interoperability. We then look
at current trends 1© combine object amd relational systems o provide 3 very prac-
tical solution 1o the problem of object storage. We conclude the chapter with how
16 desien the access layer objects. The muin idea behind the access layer is to cre-
ate a set of classes that know how to communicate with the data source. regand-
less of their format, whether it is 8 file, relational dambase. mainframe, or Inter-
met. The access classes must be able 1o wanslate any data-related requests from the
business layer into the approprite protocol for data dcceds. Access Tayer classes
provide ety migration 1o emerging distrituted object rechnology, such as CORBA
and DOOM. Furthermore, they should be able wo address the (relatively] modest
needs of two-tier client-server architectures as well as the difficult demands of
fine-grained, peer-in-peer distributed-object architectures,

The main goals of view layer objects are to display and obiain the information
needed in an accessibie, officient manner. The design of your user interface and
view laver objects, more than anything else, affocts how a user interacts and there-
fore expeniences the spplication. A well-designed user imerface has visual appeal
that motivates users 1o use the application. In Chapter 12, we leamn how to design
the view layer by mapping the user intérface objects to the view layer objects; we
book al user interfuce design rules, which are bassd on several design axioms, wmd
finally at the guidelines for developing a graphical oser interface. This chapter cod-
cludes the object-onented design pant of the book.

Chapter 13 is the first chiapter of Part V (Software Cuality), which discusses dif-
ferent aspects of saftware quality and testing. In Chager 13, we look at testing
strutegies, the impact of ohject orfentation on software quality. and guidelnes for
developing comprehensive test cases and plans that can detect and identify poten-
tial problems before delsvering the software 1o the users.

CHAPFTER 1: AN CVERVIEW OF DBUECT-ORIENTED SYSTEMS DEvELoPMENT 11

Usability testing is different from quality assumnce testing in that, rather than
finding programming defects, vou sssesy how well the interface or the software fits
asers’ needs and expectations. Furthermaore, 1o ensure usability of the system, we
At measire wser satiafaction throughout the system development. Chapler 14 de-
scribes usabality and user satisfacuon tests. We study how to develop user sutis-
faction and uksbifity tesiz based on the use cases identified during the unalysis
phase.

Appendix A containg & lemplaté for documenting a syélem requirement. The
template in this appendix is not (o replace the documentation capability of CASE
tool bt to be used s an example Tor issues or modeling elements that are needed
for creating an effective system document. Finally, Appendix B provides a review
of Windows and graphical user interfare basics.

1.7 SUMMARY

In-an object-orented environment, software 15 a collection of discrete objects tha
encapsulate their data and the functlonality to model real-world “objects.” Once
ohjects are defined, you can take it for granted that they will perform their desired
functions and so seal them off in your mind [ike black boxes. Your anention as a
pmgrm:ﬂ'i]uﬁ.'rlnml Ih:ydnmiltrmtn:rwuur do it The object-ortented
hife cycle encournges a view of the world as a system of cooperntive and collabo-
raling: agents,

An object orientation produces systems that are easier 1o evolve, mare flexible,
mone robust, and more seusable than a top-down strucisre approach. An object on-
entation
* Allows working ot & higher level of abstraction.

* Provides a stamless transition among differént phases of software developiment.

» Elu.nurig-n'. good developrient practices.
» Promotes reusahility,

The unified approach (LA) is the methodology for software development pro-
posed and used in this book. Based on the Booch, Rumbaugh, and Jacobson
methodologies, the UA consists of the following concepis:

v Use-case driven development,

= Utikizing the unified modeling language for modeling.

= Dibject-oriented analysis (utilizing ese cases and ohject modeling)
* Object-oriented design.

* Repositories of reusable classes and mazimum meuse

* Thi luyered npprowch.

* Incremental development and profotyping.

« Continpous testing.

KEY TERMS

Layered architecture {p. 6}
Software development methodelogy (po 3)

12 panT OME: INTRODUCTION

Unified approach (LIA} (p. 6)
Unified modeling language (UML) {p. 6

REVIEW QUESTIONS

1. What 15 sysem development methodology?

L What are arthogdnal views of software?

3. What is the object-orented sysiems development methodology !

4. How does the object-oriented approsch differ from the iraditional 1op-down approach?
5. What are the sdvantages of object-oriented development?

6. Describe the components of the unified approsch,

1. Ohrject-ariented development already i big in industry nod will grow bigger in the yeams
1o come. Mone and more compinics will uss an object-oriented spproach o bulld their
complex (muitimedia, workflow, database, artificial imelligence, real-time, and clieni-
server) systems, Research the liboary or WWW to obinin in article about & major coit-
pany that has used object-orientsd technology to build its future informution sysiem.

Z. Consuli the WWW or library {0 obtain an anick oo & real-workd application that has
tncorporated ehiect-oriented twols. Wiite a summary report of your findings.

A; Congult the WWW or libsary to oblain an srticle on an ohject-onented mothodalogy.
Write & fumsary of your fAndings:

4. Consull the WWW o Hbeasry 10 obiain un article. that describes o large software system
that was behind schedule, over budget, end failed 10 schieve the expecied functionakiny,
What factors were blamed, and how could the failare have been avoided?

5. Consnll the WWYW or libmiry to obfain an articls on visdal and obpect-oriented peo-
gramming. Wreite & paper based on your findings.

REFERENCES

1. Anderson, Michael, aind Bergstand, John, “Formmlizing Use Cases with Message Se-
guence Chars” Moser's thesps Department of Communication Systerms a8 Lund Insti-
te of Technology, 15

L Beoch, Grady: Jacchson, Ivar; snd Rumbaugh, James. The Uniified Modellng Language,
Metation Guide Verzion 11, htipafswrational comfombhimlinotation (Sepiember
1597

3. Edwards. John. “Lessons Lezmed in Practical Apphication of the OO0 Pamdigm™ Ob-
ject-Ciricnted Sysienis Symposium, Washingion, DC, January 1590,

4. Graham, lun. Oiject Griented Methods, 24 el Reading MA: Addison-Wesley Pubdish-
ing Company, 1994,

5 King. Gary Warren, “Object-Oriented Keally [& Better Than Struciused.”
hitp:/feranw, oz net'~-ghing/whyoop. him {Scprember 20, 1995,

. Lassesen, Kenoeth M, “Levernging the Mainframe in Business Solutions with Microsef)

- Agcexs 2o Visual Basic” TechEd (1995)

T, Burneis, Margares; Goldberg, Adele; and Lewis, Ted, eds. Viswal Object-Chrienmed Pro-
gromeing: Doncepia and Esidmisgants. Englewood Cliffs. NI Prentice-HallMannang
Publpcations, 1995,

B, ‘Warth, Nikiaus. Algerirhms + Dara Srrucnme = Frograms. Englewood Chils, N1 Pren-
iiee-Hall, 1975.

[ERLRIRRE — - = = e e - i
Object Basics

Chapter Objectives

Yisa photsld be shle s define nnd inifersinnd

» Why we need w mudy obpst-caienied concepis
* Djects pned clasees —and their diferemces.

= Clase attributes and mmethods:

* The concepl of messages.

* Class’ hierarchy inberitance and muliiple inheritance
= Object relstionsbips and sssociatians

« Encapsulation and infarmation hiding.

* Palyiecphiam

* Advantage of the object-onenred approach:

* Aggregations.

= Stmic amd dynamic bending:

= [Fnject persistence.

* Mbiin-ibamey

2.1 INTRODUCTION

If there 15 a single motivating facior behind object-oriented system developmen,
it i4 the desire 10 make software development casier and more natral by rising
the level of abstraction io the point where applications can be implemented in the
same termis in which they are described by users, Indeed, the name obfect was
chesen because “everyone knows whil an object is” The real question, then, {5 not
w0 much “What 13 an object? but “What do objects have to do with system de-
velopmepr?

44 EasT ONE INTRODUCTION

Let us develop the notton of an object through an example. A cur is an obfect:
a real-world entity, identifiably separate from its surroundings. A car has - well-
defined set of attributes in relation to other objects—such us color, manufacturer,
cost, i owner—and & well-defined cet of things you normally do with i1—-drive
it. lock it, tow it, and carry passengers in it In in object model, we call the for-
eier properties of attributes and the latter proceditres or methods, Properties (or
aftributex) describe the state (data) of an ohject. Methods (procedures) define ifs
behavine, Stocks and bonds might be objects for a hancial investment apphication,
Parts.and assemblies might be objects of a hill of materals applicaticon. Therefore,
we caf conclude that an ebject is whaslever an application wantz 1o “falk™ about

2.2 AN OBJECT-ORIENTED PHILOSOPHY

Most programming languages provide programimers with a way of describing
processes, Although most programming langiages s computationally equivident
{a process describable in one is deseribable in another), the ease of description,
reusability, extensibility, readahility, computational efficicocy, and ability to PRIk
tain the description can vary widely depending on the language used. It has been
said that, "One should speak English for business, Freoch far: seducnon, Cermaon
for engineering, and Persjan for poetry.” A similar quip could be made about pro-
grammang languages.

A language, nuturil or programming, provides {15 users i hase st of constructs,
Many programming languages derive their base ideas from the underlying ma-
chine. The machine may “understand” or recognize data fypes such as Integers,
fioating point numbers, and characters: and the progrmmming languzge will repre-
sent precisely these Types as structures, The michine may understand indirect ad-
dressing modes ar base plus offsét addressing: and the programming language cor-
respondingly will represent the concepts of painters and vectors. Naothing 1% tembly
wrong with this, but these concepts are pretty far temoved from those of o typical
application. n practical jerms, it means that n user O PIOGIRINMES is kmplement-
ing. say, & financial investment (risk, returms, growth, and the vanous imvestment
instrumhents) into the muoch kower-level primitives of the programming langdsge,
like viectors or inlegers:)

Tt wonld be murvelous if we could build a michine whese underlying primitives
were precisely those of an spplication. The user who needs 10 develop a financial
application could develop a financial investment machine direcily in finsncial in-
vestment machine languige with no mental translation at all, Clearly, il 1% 100 ex-
pensive 1o design new hardware on a per-application basts. But, it really is not nec-
essary 1o o this far, because programming languages can bridge the semantic gap
between the concepts of the application and those of the underlying machine.

A fundimental characteristic of object-oriented programming is Wt it allows
the base concepts of the language to be extended o include ideas and terms closer
1o those of its applications. New data types can be defined in terms of existing datn
types until it appears that the language directly supports the primitives of the ap-
plication. In our financial investment eximple. a bond (dats type) may be defined
that has the same understanding within the language as & character dala type. A

CHAPTER 2 OBECT RAzICE 15

buy operation on 4 bond can be defined that has the same understanding s the fu-
miliar plus {+) operation on & number. Using this data abstraction miechadibem, |
i5 possible to create new, higher-level, and more specialized data sbetractions. You
can work directly in the languasge, manipalating the kinds of “objects" required by
you or your upplication, without having to constantly straggle to bridge the gap
between how to coneeive of these objects and how o write the code to represent
them.

The fundarnental différence between the object-oriented systems and their (-
ditional counterparts is the way in which you approach problems. Most traditional
development methodologics are either algarithm centric or data centric, In an
algorithm-centric methodology, you think of an algorithm that can accomplish the
task, then build data structures for that algorithm to use. In a datu-centric method-
elogy, you think how to structure the data, then build the slgorithm. around that
“SrICHTE,

Inan sbject-oriented system, however, the nlgorithm and the dats structures dre
packaged together as an object, which his a set of antributes or properties, The stirte
of these attribufes {8 reflected in the values slored 1n jis dars strectures: In adidi-
tion, the object has a-collection of procedures or methods—things it eun do—as
reflected in bis package of methods, The anributes and methods are edpual and -
separable parts of the object; one cannot ignore one Tor the sake of the other. For
example, a car has certain attributes, such as color, yean model, and price, und can
perform a aumber of operations, such a8 go. top, ferm left, and tem right

The traditional approach to software development tends towand writing a lot of
code to do all the things that have 10 be done. The code is the plans, bricks. and
mrtar that vou ese to build structores, You are the anly active entity; the code, ba-
seally, is just a ot of building materiats, The object-oriented approach is more like
emploving a ot of belpers that take on an sctive role and form a commaunily whose
interactions become the application. Iristead of saying, “System, write the value of
this sumber fo the screen,” we tell the number object, “Write yourself” This has
& powerful effcct on the way we-approach software development.

In summary, object-oriented programming languages bridge the semantic Bup
between the ideas of the application and thode of the underiying machine, and
objects represent the application data in o way that is not forced by hardware
archilectong

2.3 OBJECTS

The tem oBfecr was fitst formally utilized in the Simula Bitiguage, and objects
tygically existed in Simula programs to simulate some aspect of reatity [5], The
term elect means:a combination of daty and logic that represents some real-
world entity. For example, consider a Sasb automobile. The Saab can be repre-
sented in a computer program a8 an object. The “data” part of this object would
be the car’s nume, color, number of doors. prce, and so forth. The “logic™ pan
of the object could be a collection of programs (whow milesge, change mileage,
stop, ga). '

46 FarT ONE: INTRODUCTION

In an object-oriented system, everything is an object: A spreadsheet, a cell in a
spreadsheet, a bas chart, a title in a bar chart, a report, a number or telephone num-
ber, a file, a folder, a printer, a word or sentence, even a single character all are
examples of an object. Each of us deals with objects daily. Some objects, such as
a telephone, are so common that we find them in many places. Other objects, like
the folders in-a file cabinet or the tools we use for home repair, may be located in
a certain place [7].

When developing an object-oriented application, two basic questions always
arise:

» What objects does the application need?
» What functionality should those objects have?

For example, every Windows application needs Windows objects that can either
display something or accept input. Frequently, when a window displays something,
that something is an object as well.

Conceptually, each object is responsible for itself. For example, a Windows ob-
ject is responsible for things like opening, sizing, and closing itself. A chart object
is responsible for maintaining its data and labels and even for drawing itself.

Programming in an object-oriented system consists of adding new kinds of ob-
jects to the system and defining how they behave. Frequently, these new object
classes can be built from the objects supplied by the object-oriented system.

2.4 OBJECTS ARE GROUPED IN CLASSES

Many of us find it fairly natural to partition the world into objects, properties
(states), and procedures (behavior), Thiz is a common and useful pantitioning or
classification. Also, we routinely divide the world along a second dimension: We
distinguish classes from instances. When an eagle flies over us, we have no trou-
ble identifying it as an eagle and not an airplane. What is occurring here? Even
though we might never have seen this particular bird before, we can immediately
identify it as an eagle. Clearly, we have some general idea of what eagles look like,
sound like, what they do, and what they are good for—a genenc notion of eagles,
or what we call the class cagle.

Classes are used to distinguish one type of object from another. In the context
of object-ariented systems, a class is a set of objects that share 8 common struc-
ture and a common behavior; a single object is simply an instance of a class [3).
A class is a specification of structure (instance variables), behavior (methods), and
inheritance for objects. (Inheritance is discussed later in this chapter.)

Classes are an important mechanism for classifying objects. The chief role of a
class is to define the properties and procedures (the state and behavior) and ap-
plicability of its instances. The class car, for example, defines the property color.
Each individual car (formally, each instance of the class car) will have a value for
this property, such as maroon, yellow, or white.

In an object-oriented system, a method or behavior of an object is defined by
its class. Each object is an instance of a class. There may be many different classes.

CHAPTER 2 OBJECT Basics 17

| Employes Class I

Sue

Bl

ok

Objects of ihe Class Employes

Hal
A

Ermavid

FIGURE 2-1
Sue, BN, Al, Hal, and David are instances or objects of the class Employes,

Think of a class as an object template (see Figure 2-1). Every object of a given
class has the same data format and responds to the same instructions. For exam-
ple, employees, such as Sue, Bill, Al, Hal, and David all are instances of the class
Employee. You can create unlimited instances of a given class. The instructions re-
sponded to by each of those instances of employee are managed by the class. The
data associated with a particular object is managed by the object itself. For exam-
ple, you might have two employee objects, one called Al and the other Bill. Each
employee object is responsible for its own data, such as social security number,
address, and salary. In shon, the objects you use in your programs are instances of
classes. You can use any of the predefined classes that are part of an object-ori-
ented system of you can creale your own.

2.5 ATTRIBUTES: OBJECT STATE AND PROPERTIES

Properties represent the state of an object. Often, we want to refer to the descrip-
tion of these properties rather than how they are represented in a particular pro-
gramming language. In our example, the properties of a car, such as color, manu-
facturer, and cost, are abstract descriptions (see Figure 2-2), We could represent

FIGURE 2-2
The attibutes of a car object.
Car
Cast
Cu]pr
Make

Model

18 paRT ONE: INTRODUGTION

each property in several ways in a programming language. For color, we could
choose to use a sequence of characters such as red, or the (stock) number for red
paint, or a reference to a full-color video image that paints a red swatch on the
screen when displayed. Manufacturer could be denoted by a name, a reference to
a manufacturer object, or 4 corporate 1ax identification number. Cost could be a
floating point number, a fixed point number, or an integer in units of pennies or
even lira. The importance of this distinction is that an object’s abstract state can
be independent of its physical representation.

2.6 OBJECT BEHAVIOR AND METHODS

When we talk about an elephant or a car, we usually can describe the set of things
we normally do with it or that it can do on its own. We can drive a car, we can
ride an elephant, or the elephant can eat a peanut. Each of these statements is a
description of the object’s behavior. In the object model, object behavior is de-
scribed in methads or procedures. A method implements the behavior of an object.
Basically, a method is a function or procedure that is defined for a class and typ-
ically can access the internal state of an object of that class to perform some op-
eration. Behavior denotes the collection of methods that absiractly describes what
an object is capable of doing. Each procedure defines and describes a particular
behavior of an object. The object, called the receiver, is that on which the method
operates. Methods encapsulate the behavior of the object, provide interfaces to the
object, and hide any of the internal structures and states maintained by the object.
Consequently, procedures provide us the means o communicate with an object and
access its properties. The use of methods to exclusively access or update proper-
ties is considered good programming style, since it limits the impact of any later
changes to the representation of the properties,

Objects take responsibility for their own behavior. In an object-oriented system,
one does not have to write complicated code or utilize extensive conditional checks
through the use of case statements for deciding what function to call based on a
data type or class. For example, dn employee object knows how to compute its
salary. Therefore, to compute an employee salary, all that is required is to send the
computePayroll “message™ to the employee object, This simplification of code
simplifies application development and maintenance.

2.7 OBJECTS RESPOND TO MESSAGES

An object’s capabilities are determined by the methods defined for it. Methods
conceptually are equivalent to the function definitions used in procedural lan-
guages. For example, a draw method would tell a chart how to draw itself. How-
ever, to do an operation, a message is sent to an object. Objects perform opera-
tions in response to messages, For example, when you press on the brake pedal of
a car, you send a sfop message to the car object. The car object knows how to re-
spond to the stop message, since brakes have been designed with specialized parts
such as brake pads and drums precisely to respond to that message. Sending the
same sfop message to a different object, such as a tree, however, would be mean-

CHAPTER 2 OBJECT Basics 19

ingless and could result in an unanticipated (if any) response. Following a set of
conventions, or protocols, protects the developer or user from unauthorized data
manipulation.

Messages essentially are nonspecific function calls: We would send a draw
message to a chart when we want the chart to draw itself. A message is different
from a subroutine call, since different objects can respond to the same message in
different ways. For example, cars, motoreycles. and bicycles will all respond to a
stop message, but the actual operations performed are object specific.

In the top example, depicted in Figure 2-3, we send a Brake message to the Car
object. In the middle example, we send a multiplicarion message 1o 5 object fol-
lowed by the number by which we want to multiply 5. In the bottom example, a
Compure Payroll message is sent to the Employee object, where the employee ob-
Ject knows how to respond to the Payroll message. Note that the message makes
no assumptions about the class of the receiver or the arguments; they are simply
objects, It is the receiver's responsibility to respond to a message in an appropri-
ate manner. This gives you a great deal of flexibility, since different objects can
respond to the same message in different ways. This is known as polymaorphism
{more on polymorphism later in this chapter), meaning “many shapes (behav-
1ors).” Polymorphism is the main diiference between a message and a subroutine
call.

Methods are similar to functions, procedures, or subroutines in more traditional
programming languages, such as COBOL. Basic, or C. The area where methods
and functions differ, however, is in how they are invoked. In a Basic program, you
call the subroutine (e.g., GOSUB 1000); in & C program, you call the function by
name (e.g., draw chart). In an object-oriented system, you invoke a method of an
object by sending an object a message. A message is much more general than a
function call. To draw a chart, you would send a draw message to the chart object.
Notice that draw is a more general instruction than, say, draw a charr. That is be-
cause the draw message can be sent to many other objects. such as a line or cir-
cle, and each object could act differently.

It is important to understand the difference between methods and messages. Say
you want to tell someone to make you French onion soup. Your instruction is the

FIGURE 2-3
Objects respond to messages according to methods defined in its class.
Bruke
7
Sobjeat O - et
- Compute payrall
Employee olijogt et - +--- oo rssmetisaets e neridsnnnnns

20 FeRT ONE: INTRODUCTION

message, the way the French onion soup is prepared is the method, and the French
onion soup is the object. In other words, the message is the instruction and the
method is the implementation. An object oran instance of a class understands mes-
sages. A message has a name, just like a method, such as cost, set cost, cooking
time. An object understands a message when it can match the message to a method
that has a same name as the message. To match up the message, an object first
searches the methods defined by its class. If found, that method is called up. If not
found. the object searches the superclass of its class. If it is found in a superclass,
then that method is called up. Otherwise, it continues the search upward. An error
occurs only if none of the superclasses contains the method.

A message differs from a function in that a function says how to do something
and a message says what to do. Because a message is so general, it can be vsed
over and over again in many different contexts. The result is a system more re-
silient to change and more reusable, both within an application and from one ap-
plication o another.

2.8 ENCAPSULATION AND INFORMATION HIDING

Information hiding is the principle of concealing the internal data and procedures
of an object and providing an interface to each object 1n such a way as to reveal
as little as possible about its inner workings: As in conventional programming,
some languages permit arbitrary access to objects and allow methods 1o be defined
outside of a class. For example; Simula provides no protection, or information hid-
ing. for objects, meaning that an object's data, or instance variables, may be ac-
cessed wherever visible. However, most object-oriented languages provide a well-
defined imerface 1o their objects through classes. For example, C++ has a very
general encapsulation protection mechanism with public, private, and protected
members. Public members (member data and member functions) may be accessed
from anywhere. For instance, the computePayroll method of an employee object
will be public. Privaie members are accessible only from within a class. An object
data representation, such as a list or an array, usually will be private. Protected
members can be accessed only from sobelasses.

Often, an object is said to encapsulate the data and a program. This means that
the user cannot see the inside of the object “capsule.” but can use the object by
calling the object’s methods [8], Encapsulation or information hiding is a design
goal of an object-oriented system, Rather than allowing an object direct access to
another object’s data, a message is sent to the target object requesting information.
This ensures not only that instructions are operating on the proper data but also
that no object can operate directly on another object's data. Using this technique,
an object’s internal format is insulated from other objects.

Another issue is per-object or per-class protection. In per-class protection, the
most common form (e.g., Ada, C++, Eiffel), class methods can access any object
of that class and not just the receiver, In per-object protection, methods can access
only the receiver.

An important factor in achieving encapsulation is the design of different classes
of objects that operate using a common protecol, or object’s user interface. This

CHAPTER £ OBJECT Basics 21

means that many objects will respond to the same message, but each will perform
the message using operations tailored to its class. In this way, a program can send
4 genenic message and leave the implementation up (o the receiving object, which
reduces interdependencies and increases the amount of interchangeable and
reisable code,

A car engine is an example of encapsulation. Although engines may differ in
implementation, the interface between the driver and the car is through a common
protocol: Step on the gas to increase power and let up on the gas to decrease power,
Since all drivers know this protocol, all drivers can use this method in all cars, no
matter what éngine is in the car. That detail is insulated from the rest of the car
and from the driver. This simplifies the manipulation of car objects and the main-
tenance of code.

Data abstraction is a benefit of the object-oriented concept that incorporates
encapsulation and polymorphism. Data are abstracted when they are shielded by
2 full set of methods and only those methods can access the data portion of an
object.

2.9 CLASS HIERARCHY

An object-oriented system organizes classes into a subclass-superclass hierarchy.
Different properties and behaviors are used as the basis for making distinctions be-
tween classes and subclasses. At the top of the elass hierarchy are the most gen-
eral classes and at the bottom are the most specific. The family car in Figure 2-4
i a subclass of car. A subelass inherits all of the properties and methods (proce-
dures) defined in its superclass. In this case. we can drive a family car just as we
can drive any car or, indeed, almost any motor vehicle. Subclasses generally add
new methods and properties specific to that class. Subclasses may refine or con-
strain the state and behavior inherited from its superclass. In our example, race cars

FIGURE 2-4
Superclassisubclass hierarchy.

Bug

22 PART ONE: INTRODUGTION

only have one occupant, the driver. In this manner, subclasses modify the attribute
(number of passengers) of its superclass, Car,

By contrast, superclasses generalize behavior, It follows that a more general state
and behavior is modeled as one moves up the superciass-subclass hierarchy (or
simply class hierarchy) and a more specific state is modeled as one moves down.

It is evident from our example that the notion of subclasses and superclasses is
relative. A class may simultaneously be the subclass to some class and a super-
class to another class(es). Truck is a subciass of a motor vehicle and a superciass
of both 18-wheeler and pickup. For example, Ford is a class that defines Ford car
objects (see Figure 2-5), However, more specific classes of Ford car objects are
Mustang, Taurus, Escont, and Thunderbird, These classes define Fords in a much
more specialized manner than the Ford car class itself. Since the Taurus, Escort,
Mustang, and Thunderbird classes are more specific classes of Ford cars, they are
considered subclasses of class Ford and the Ford class is their superclass. How-
ever, the Ford class may not be the most general in our hierarchy. For instance, the
Ford class is the subclass of the Car class, which is the subclass of the Vehicle
class. Object-oriented notation will be covered in Chapter 5, the chapter on object-
oriented modeling.

The car class defines how a car behaves, The Ford class defines the behavior of
Fard cars (in addition to cars in general), and the Mustang class defines the be-
havior of Mustangs (in addition to Ford cars in general). Of course, if all you

FIGURE 2-5
Class hierarchy for Ford class,
Vehicle
i
Car
Py
Ford
Fay

Mustang Taurus Thunderbird

CHAFTER 2: OBJECT Basics 23

wanted was a Ford Mustang object, you would write only one class, Mustang. The
class would define exactly how a Ford Mustang car operates. This methodology is
limiting because, if you decide later to create a Ford Taurus object, you will have
to duplicate most of the code that describes not only how a vehicle behaves but
also how a car, and specifically a Ford, behaves.

This duplication occurs when using a procedural language, since there is no
concept of hierarchy and inheriting behavior. An object-oriented system eliminates
duplicated effort by allowing classes to share and reuse behaviors.

You might find it strange to define a Car class. After all, what is an instance of
the Car class? There is no such thing as a generic car. All cars must be of some
make and model. In the same way, there are no instances of Ford class. All Fords
must belong to one of the subclasses: Mustang, Escort, Taurus, or Thunderbird.
The Car class is a formal class, also called an abstract class. Formal or abstract
classes have no instances but define the common behaviors that can be inherited
by more specific classes.

In some object-oriented languages, the terms superclass and subclass are used
instead of base and derived. In this book, the terms superclass and subclass are
wsed consistently,

2.9.1 Inheritance

Inheritance is the property of object-oriented systems that allows objects to be
built from other objects. Inheritance allows explicitly taking advantage of the com-
monality of objects when constructing new classes. Inheritance is a relationship
between classes where one class is the parent class of another (derived) class. The
parent class also is known as the base class or superclass. Inheritance provides
programming by extension as opposed 1o programming by reinvention [10). The
real advantage of using this techmque is that we can build on what we already have
and, more important, reuse what we already have. Inheritance allows classes to
share and reuse behaviors and attributes. Where the behavior of a class instance is
defined in that class’s methods, a class also inherits the behaviors and attributes of
all of its superclasses.

For example, the Car class defines the general behavior of cars. The Ford class
mherits the general behavior from the Car class and adds behavior specific to
Fords. It is not necessary to redefine the behavior of the car class; this is inherited.
Another level down, the Mustang class inherits the behavior of cars from the Car
class and the even more specific behavior of Fords from the Ford class. The Mus-
tang class then adds behavior unigue to Mustangs.

Assume that all Fords use the same braking system. In that case, the stop
method would be defined in class Ford (and not in Mustang class), since it is a be-
havior shared by all objects of class Ford. When you step on the brake pedal of a
Mustang, you send a stop message to the Mustang object. However, the stap
method is not defined in the Mustang class, so the hierarchy is searched until a
stop method is found. The srop method is found in the Ford class, a superclass of
the Mustang class, and it is invoked (see Figure 2-6).

In a similar way, the Mustang class can inhenit behaviors from the Car and the
Vehicle classes. The behaviors of any given class really are behaviors of its su-

24 reRT ONE: INTRODUCTION

Vehicle
Car
iy
I kmow how to slop
stop method is reusable
Ford
£
| Mustang Taurus Thunderbird
i 4 [don’t know how 1o stop
stop {my Mustang)
FIGURE 2-6
Inheritance aliows rausability.

perclass or a collection of classes. This straightforward process of inhentance pre-
vents you from having to redefine every behavior into every level or reinvent the
wheel, or brakes, for that matter.

Suppose that most Ford cars use the same braking system, but the Thunderbird
has its own antilock braking system. In this case, the Thunderbird class would re-
define the stop method. Therefore, the stop method of the Ford class would never
be invoked by a Thunderbird object. However, its existence higher up in the class
hierarchy causes no conflict, and other Ford cars will continue to use the standard
braking system.

Dynamic inheritance allows objects to change and evolve over time. Since base
classes provide properties and attributes for objects, changing base classes changes
the properties and attributes of a class. A previous example was a Windows object
changing into an icon and then back again, which involves changing a base class
between a Windows class and an Icon class. More specifically, dynamic inheri-
tance refers to the ability to add, delete, or change parents from objects (or classes)
at run time.

In object-oriented programming languages, variables can be declared to hold or
reference objects of a particular class. For example, a variable declared to refer-
ence a motor vehicle is capable of referencing a car or a truck or any subelass of
motor vehicle,

— BN —

CHAPTER 2 OBJECT BASICS 25

Motor Vehicle
FaY
Truck Car Bus
Utility Vehicle

FIGURE 2-7
Usaty vehicle inherils from both the Car and Truck classes.

2.9.2 Multiple Inheritance

Some object-oriented systems permit a class to inherit its state (attributes) and be-
naviers from more than one superclass. This kind of inheritance is referred to as
multiple inheritance. For example, a utility vehicle inherits attributes from both
the Car and Truck classes (see Figure 2-T),

Multiple inheritance can pose some difficulties. For example, several distinct
parent classes can declare a member within a multiple inheritance hierarchy. This
then can become an issue of choice, particularly when several superclasses define
the same method. It also is more difficult to understand programs written in mul-
ople inheritance systems.

One way of achieving the benefits of multiple inheritance in a language with
smgle inheritance is to inherit from the most appropriate class and then add an ob-
ect of another class as an attribute.

210 POLYMORPHISM

Foly means “many” and morph means “form” In the context of object-oriented
syslems, it means objects that can take on or assume many different forms. Poly-

l morphism means that the same operation may behave differently on different
classes [11]. Booch [1-3] defines polymorphism as the relationship of objects of
many different classes by some common superclass; thus. any of the objecis des-
sznated by this name is able to respond to some common set of operations in a dif-
ferent way. For example, consider how driving an automobile with 2 manual trans-
mussion is different from driving a car with an automatic transmission. The manual
TEnsmission requires you to operate the cluich and the shift, so in addition 1o all
other mechanical controls, you alse need information on when to shift gears.
Therefore, although driving is a behavior we perform with all cars (and all motor

_ vehicles), the specific behavior can be different, depending on the kind of car we

26 FaRT ONE: INTRODUGTION

are driving. A car with an automatic transmission might implement its drive
method to use information such as current speed, engine RPM, and current gear.
Another car might implement the drive method to use the same information but
require additional information, such as “the clutch is depressed” The method is
the same for both cars, but the implementation invoked depends on the type of car
{or the class of object). This concept. termed polymorphism, is a fundamental con-
cept of any object-oriented system.

Polymorphism allows us to write generic, reusable code more easily, because
we can specify general instructions and delegate the implementation details to the
objects involved. Since no assumption is made about the class of an object that re-
ceives a message, fewer dependencies are needed in the code and, therefore, main-
tenance is easier. For example, in a payroll system, manager, office worker, and
production worker objects all will respond to the compute payroll message, but the
actual operations performed are object specific.

2.11 OBJECT RELATIONSHIPS AND ASSOCIATIONS

Association represents the relationships between objects and classes. For example,
in the statement “a pilot can fly planes™ (see Figure 2-8), the italicized term is an
association.

Associations are bidirectional; that means they can be traversed in both direc-
tions, perhaps with different connotations. The direction implied by the name is
the forward direction; the oppesite direction is the inverse direction. For example,
can fly connects a pilot to certain airplanes. The inverse of can fly could be called
is flown by. /

An important issue in-association is cardinality, which specifies how many in-
stances of one class may relate to a single instance of an associated class [12]. Car-
dinality constrains the number of related objeets and often is descrbed as being
“one” or “many.” Generally, the multiplicity value is a single interval, but it may
be a set of disconnected intervals: For example, the number of cylinders in an en-

gine is four, six, or eight. Consider a client-account relationship where one client

can have one or more accounts and vice versa (in case of joint accounts); here the
cardinality of the client-account association is many to many, _
\
2.11.1 Consumer-Producer Association
A special form of association is a consumer-producer relationship, also known as
a client-server association or a use relationship. The consumer-producer rela-
tienship can be viewed as one-way interaction: One object requests the service of
another object. The object that makes the request is the consumer or client, and
the object that receives the request and provides the service is the producer or

FIGURE 2-8
Association represents tha relationship among objeets, which |s bidirectional.

can fly flown by

Pilo Planes

CHAPTER 2 ORIECT Basics 27

Brini < Reguest for printing Item

FIGURE 2-9
The consumenpraducer assocmatkion,

server. For example, we have a print object that prints the consumer object. The
print producer provides the ability to print other objects. Figure 2-9 depicts the
consumer-producer association,

2.12 AGGREGATIONS AND OBJECT CONTAINMENT

All objects, except the most basic ones, are composed of and may contain other
objects. For example, a spreadsheet is an object composed of cells, and cells are
objects that may contain text, mathematical formulas, video, and so forth, Break-
ing down objects into the objects from which they are composed is decomposition,
This is possible because an object’s attributes need not be simple data fields; ar-
tributes tan reference other objects. Since each object has an identity, one object
can refer to other ohjects. This is known as aggregation, where an attribute can be
an object itself. For instance, a car object is an aggregation of engine, seat, wheels,
and other objects (see Figure 2-10).

FIGURE 2=-10

A Car object is an aggregation of other objects such as enging, seat, and wheel objscts.
Car
[4]

Engine Seat Wheel

28 PaET ONE: INTRODUCTION

2.13 CASE STUDY: A PAYROLL PROGRAM

Consider a payroll program that processes employee records at a small manufac-
turing firm. The company has several classes of employees with particular payroll
requirements and rules for processing each. This company has three types of em-
ployees:

L. Managers receive a regular salary.

2. Office Workers receive an hourly wage and are eligible for overtime after 40
hours.

3. Production Workers are paid according to-a piece rate.

We will walk through traditional and object-oriented system development ap-
proaches to highlight their similarities and differences with an eye on object-ori-
ented concepts.! The main focus of this exercise is to better understand the object-
oriented approach. To keep the discussion simple, many issues (such as data flow
diagrams, entity-relationship diagrams, feasibility analysis, and documentation)
will not be addressed here,

2.13.1. Structured Approach

The traditional structured analysis/structured design (SA/SD) approach relies on
modeling the processes that manipulate the given input data 1o produce the desired
output. The first few steps in SA/SD involve creation of preliminary data flow
diagrams and data modeling. Data modeling is a systems development methodol-
ogy concerned with the system's entities, their associations, and their activities.
Data modeling is accomplished through the use of entity-relationship diagrams.
The SA/SD approach encourages the top-down design (also known as rop-down
decomposition or stepwise refinement), characterized by moving from a general
statement about the process involved in solving a problem down toward more and
more detailed statements about each specific task in the process. Top-down design
works well because it lets us focus on fewer details at once. It is a logical tech-
nigue that encourages orderly system development and reduces the level of com-
plexity at each stage of the design. For obvious reasons, top-down design works
best when applied to problems that clearly have a hierarchical natre. Unfortu-
nately, many real-world problems are not hierarchical. Top-down function-based
design has other limitations that become apparent when developing and maintain-
ing large systems.

Top-down design works by continually refining a problem into simpler and sim-
pler chunks. Each chunk is analyzed and specified by itself, with little regard (if
any) for the rest of the system. This, after all, is one reason why top-down design
is so effective at analyzing a problem. The method works well for the initial de-
sign of a system and helps ensure that the specifications for the problem are met
and solved. However, each program element is designed with only a limited set of
requirements in mind. Since it is unlikely that this exact set of requirements will

IStructured approach s a valid approach, 1t is estimated that 25 percent of firms use structured de-
velopmient appronches. Therefore, it will continue to play a role in systems development.

CHAPTER 2 ORJECT BASICS 29

return in the next problem, the program’s design and code are not geéneral and
reusable, Top-down design does not preclude the creation of general routines that
are shared among many programs, but it does not encourage it. Indeed, the idea of
combining reusable programs into a system is a bottom-up approach, quite the op-
pasite of the top-down style [9].

Once the system modeling and analysis have been completed, we can proceed
to design. During the design phase, many issues must be studied. These include
user interface design (input and output), hardware and software issues such as sys-
tem platform and operating systems, and data or database management issues. In
addition, people and procedural issues, such as training and documentation, must
be addressed.

Finally, we proceed to implementing the system using a procedural language.
Most current programming languages, such as FORTRAN, COBOL, and C, are
based on procedural programming. That is, the programmer tells the computer ex-
actly how to process each piece of data, presents selections from which the user
can choose, and codes an appropriate response for each choice. Today's applica-
tions are much more sophisticated and developed with more demanding require-
ments than in the past. which makes systems development using these tools much
more difficalt.

In a procedural approach such as C or COBOL, the payroll program would in-
clude conditional logic to check the employee code and compute the payroll ac-
cordingly:

FOR EVERY EMPLOYEE DO
BEGIN
IF employes = manager THEN
CALL eomputeManagerSalary
IF employes = office worker THEN
CALL computeOfficeWorkerSalary
IF emploves = production worker THEN
CALL compuleFroductionWorkerSalary
END

_If new classes of employees are added. such as temporary office workers inel-
igible for overtime or junior production workers who receive an hourly wage plus
a lower piece rate, then the main logic of the application must be modified to ac-
commodate these requirements:

FOR EVERY EMPLOYEE DO
BEGIN

IF smployse = managar THEN
CALL computaManagerSalary

IF employes = office worker THEN
CALL computeOfficeWorkerSalary

IF employes = production worker THEN
CALL computeProductionWorkerSalary

30 FART ONE: INTRODUCTION

IF employvee = emporary office worker THEM
CALL computeTempararyOfficeWarkerSalany
IF employee = junior production worker THEN
GALL computeuniorProductionWorkerSalary
END

Similarly, other areas of the program that pertain to data entry or reporting
might have to be modified to take into account new kinds of employvees. A proce-
dural language does not lend itself easily to writing code in a generic and reusable
way. Therefore you must provide detailed processing steps for each type (¢class) of
employee. The main problem with this traditional way of programming is the fol-
lowing:

The introduction of new classes of data with different needs requires changing the main
logic of the program. It also may require the addition of new code in many different
areas of the application,

This problem limits a programmer’s ability to reuse code, since each function
or procedure is tied to the data on which it operates, On the other hand, object-
orienied programming allows the programmer (o solve problems by creating log-
ical objects that incorporate both data and functionality in a unit. You can create
fully tested and debugged classes of objects that can be reused in other programs
and thig, in turn, can reduce the amount of code that must be written tor succes-
‘sive applications.

2.13.2 The Object-Oriented Approach
Object-oriented systems development consists of

= Object-oriented analysis,

= Dbject-oriented information modeling,
= Object-oriented design.

= Prototyping and implementation.

= Testing, iteration, and documentation,

Object-oriented software development encourages you to view the problem as
a system of cooperative objects. Object-oriented analysis shares certain aspects
with the structured approach, such as determining the system requirements. How-
ever, one major difference is that we do not think of data and procedures sepa-
rately, because objects incorporate both. When developing an object-oriented ap-
plication, two basic questions always arise;

* What objects does the application need?
* What functionality should those objects have?

Each object is entirely responsible for itself. For example, an employee object
is responsible for things (operations) like computing payrolls, printing paychecks,
and storing data about itself, such as its name, address, and social security num-

CHAPTER 2: OBJECT Basics 31

ber. The first task in object-oriented analysis is to find the class of objects that
will compose the system. At the first level of analysis, we can look at the physi-
cal entities in the system. That is, who are the players and how do they cooperate
to do the work of the system? These entities (objects) could be individuals, orga-
nizations, machines, units of information, molecules, pictures, or whatever else
makes sense in the context of the real-world system. This usually is a very good
starting point for deciding what classes to design. At this level, you must look at
the physical entities in the system. In the process of developing the model, the ob-
jects that emerge can help us establish a workable system. However, Coad and
Yourdon [4] have listed the following clues for finding the candidate classes and
objects:

* Persons. What role dees a person play in the system? For example, customers,
employees of which the system needs to keep track.

* Places. These are physical locations, buildings, stores, sites or offices about
which the system keeps information.

* Things or events. These are events, points in time that must be recorded. For ex-
ample, the system might need to remember when a customer makes an order:
therefore, an order is an object. Associated with things remembered are attrib-
utes (after all, things to remember are objects) such as who, what, when, where,
how, or why. For example, some of the data or attributes of order object are
customer-1D (who), date-of-order (when), soup-ID {what), and so on.

Next, we need to identify the hierarchical relation between superclasses and
subclasses. Another task in object-oriented analysis is to identify the attributes
(properties) of objects, such as color, cost, and manufacturer. Identifying behavior
(methods) is next. The main question to ask is What seérvices must a class provide?
The answer to the question allows us to identify the methods a class must contain.
Once you identify the overall system’s responsibilities and the information it needs
to remember, you can assign each responsibility to the class to which it logically
belongs.

As in the structured approach, we need to model the system’s objects and their
relationships. For example, the objects in our payroll system are Employee, Man-
ager, Production Worker, and Temporary Office Worker,

Other objects (things) are part of the system, such as the paycheck or the prod-
uct being made and the process being used to make the product, However, here we
focus on the class of Employees. The payroll program would have different classes
of Employees corresponding to the different types of employees in the company
{see Figure 2-11). Every employee object would know how to calculate its pay-
roll according to its own requirements.

The goal of object-oriented analysis is to identify objects and classes that sup-
port the problem domain and system's requirements. Object-oriented design iden-
tifies and defines additional objects and classes that support an implementation of
the requirements [4]. For example, during design you might need to add objects
for the user interface for the systems; that is, data entry windows, browse windows,
and the like.

32 pAET ONE: INTRODUCTION

Employee

name
address

54

CHficeWorker Muntger ProductionWarker

dataEntry dataEntry dataEntry
CompuePayroll ComputePayroll ComputePayroll
printBepon priniEeport printEeport

FIGURE 2-11
Class hierarchy for the payrol application.

The main program would be written in a general way that looped through all of
the employees and sent a message to each employee to calculate its payroll:

FOR EVERY EMPLOYEE DO
BEGIN

employes computePayroll
END

If a new class of employee were added, a class for that type of employee would
have o be created (see Figure 2-12), This class would know how to calculate its
payroll. Unlike the procedural approach, the main program and other related parts
of the program would not have 1o be modified; changes would be limited to the
addition of a new class.

2.14 ADVANCED TOPICS

2.14.1 Object and ldentity

A special feature of object-oriented systems is that every object has its own unique
and immutable identity, An object’s identity comes into being when the object is
created and continues to represent that object from then on. This identity never is
confused with another object, even if the original object has been deleted. The
identity name never changes even if all the properties of the object change—it 1s

CHAPTER 2. OBJECT BASICS 33

Employves
name
address
salary
554
Fa
OfficeWorker Manzger ProductionWorker
ditaEntry ditaEntry dataEntry
ComputePayroll ComputePayroll CompuiePayroll
printReport printRepon printReport
Tempaorary Office Worker TunicrProdiscticnWorker
ComputzPayroll ComputePayroll

FIGURE 2-12
Tha hiararchy for the payroll application.

independent of the object’s state. In particular, the identity does not depend on the
object’s name, or its key, or its location. All these can change with no effect on be-
ing able to recognize the object as the “same one.”

In an object system, object identity often is implemented through some kind of
object identifier (OID) or unique identifier (UID). An OID is dispensed by a part
of the object-oriented programming system that is responsible for guaranteeing the
uniqueness of every identifier. OIDs are never reused.

As another example (see Figure 2—13), cars may have an “owner” property of
clags Person. A particular instance of a car, a black Saab 9008, is owned by per-
son instance named Hal. In an object system, the relationship between the car and
Hal can be implemented and maintained by a reference. A reference in an object-
oriented system is similar to a pointer in other programming languages. Pointers
refer directly 1o the address of the thing they point to in the physical memary. Ob-
Ject references directly denote the object to which they refer. References often are
implemented by using the UID of the object as the reference, since the UID guar-
antees ohject identity over time. Fortunately, we need not be concerned with or
manage the UID. Most object-oriented systems will perform that transparently,

In Figure 2—13, the owner property of a car contains a reference to the person
instance named Hal. In addition, an object may refer back to an object that refers
to it. In this example, a person has an owns property that contains a reference to
the car instance. References may or may not carry class information with them.

34 PaRT ONE: INTRODUCTION

Car Instance (object) Person Instance {ohject)
Make: Soab Mame: Hal
Color: Black Age: 36
Model; 2005 Owns,
Oriner

FIGURE 2-13
Tha owner property ol a ear containg & refarence 1o the parson insfance named Hal,

2.14.2 Static and Dynamic Binding
The process of determining (dynamically) at run ume which function to invoke is
termed dynamic binding. Making this determination earlier, at compile time, is called
static binding. Static binding optimizes the calls; dynamic hinding occurs when poly-
morphic calls are issued. Not all function invocations require dynamic binding,
Dynamic binding allows some method invocation decisions to be deferred un-
til the information is known. A run-time selection of methods often is desired, and
even required, in many applications; including databases and user interaction (e.g.,
GUls). For example. a cut operation in an Edit submenu may pass the cut operd-
tion (along with parameters) to any object on the Desktop, each of which handles
~ the message in its own way, If an (application) object can cut many kinds of ob-
jects, such as text and graphic objects, many overloaded cut methods, one per type
of object to be cut, are available in the receiving object; the particular method be-
ing selected is based on the actual type of object being cut (which in the GUI case
is not available until run time} [6].

2.14.3 Object Persistence

Objects have a lifetime. They are explicitly created and can exist for a period of
time that, traditionally, has been the duration of the process in which they were cre-
ated. A file or a database can provide suppor for objects having a longer lifeline—
longer than the duration of the process for which they were created. From a |an-
guage perspective, this characteristic is called object persistence. An object can per-
sist beyond application session boundaries, during which the object is stored in.a
file or a database, in some file or database form. The object can be retrieved in an-
other application session and will have the same state and relationship to other ob-
jects as at the time it was saved. The lifetime of an object can be explicitly termi-
nated. After an object is deleted, its state is inaccessible and its persistent storage is
reclaimed. lts identity, however, is never reused, not even after the object is deleted.
Ohbiject storage and its access from the database will be covered in Chapter 11.

2.14.4 Meta-Classes

Earlier, we said that, in an object-oriented system, everything is an object: num-
bers, arrays, records, fields, files, forms, and so forth. How about a class? Is a class

CHAPTER 2: OBJECT BASICS 35

an object? Yes, a class is an object, So, if it is an object, it must belong to a class
(in classical object-oriented systems, anyway), Indeed, such a class belongs to a
class called a meta-class, or a class of classes, For example, classes must be im-
plemented in some way; perhaps with dictionaries for methods, instances, and par-
ents and methods to perform all the work of being a class. This can be declared in
a class named meta-class. The meta-class also can provide services to application
programs, such as retuming set of all methods, instances, or parents for review
(or even modification). Therefore, we can say that all objects are instances of a
class and all classes are instances of a meta-class. The meta-class is a class and
therefore an instance of itself.

Generally speaking, meta-classes are used by the compiler. For example, the
meta-classes handle messages to classes, such as constructors, “new.” and “class
variahles” (a term from Smalltalk), which are variables shared between all in-
stances of a class (static member data in C++),

2.15 SUMMARY

The goal of object-oriented programming is to make development easier, quicker, and
more natural by raising the level of abstraction to the point where applications can be
implemented in the same terms in which they are described by the application do-
main. The mamn thrust of object-oriented programming is to provide the user with a
set of objects that closely reflects the underlying application. The user who needs to
develop a financial application could develop it in a financial language with consid-
erably less difficulty. Object-oriented programming allows the base concepts of the
language to be extended to include ideas closer to those of its application. You can
define a new data type (object) in terms of an existing data type until it appears that
the language directly supports the primitives of the application. The real advantage of
using the object-oriented approach is that you can build on what you already have.

Object-oriented software development is a significant departure from the tradi-
tional structured approach. The main advantage of the object-oriented approach is
the ability to reuse code and develop more maintainable systems in a shorter
amount of time. Additionally, object-oriented systems are better designed, more re-
silient to change, and more reliable, since they are built from completely tested
and debugged classes.

Rather than treat data and procedures separately, object-oriented systems link
both closely into objects. Events occur when objects respond to messages, The ob-
jects themselves determine the response 10 the messages, allowing the same mes-
sage to be sent to many objects.

Each object is an instance of a class. Classes are organized hierarchically in a
class tree, and subclasses inherit the behavior of their superclasses, Good object-
oriented programming uses encapsulation and polymorphism, which, when used
in the definition of classes, result in completely reusable abstract data classes. Ob-
Jects have a lifetime. They are explicitly created and can exist for a period of time
that, traditionally, has been the duration of the process for which they were cre-
ated. A file or a database can provide support for objects having a longer lifeline—
longer than the duration of the process for which they were created.

36 pPuaT ONE: INTHODUCTION

KEY TERMS

Abstract classes (p. 23}
Aggregation (p. 27)
Algorithm-centric methodology (p. 15)
Association (p. 26)

Attribute (p. 14)

Base classes (p. 23)

Cardinality (p. 26)

Class hierarchy (p. 21)

Class (p. 16)

Client-server association (p. 26)
Consumer-producer relationship (p. 26)
Data-centric methodology (p. 15)
Derived classes (p. 23)

Dynamic binding (p. 34)
Dynamic inheritance (p. 24)
Encapsulation (p. 20)

Formal classes (p. 23)
Inheritance (p. 23)

Instance (p. 16}

Instance variable (p. 20)
Message (p. 19)

Meta-class (p. 35)

Method (p. 14)

Multiple inheritance (p. 23)
Object (p. 15)

Object identifier (OID) (p. 33)
Object-oriented programming (p. 14)
‘Ohject persisténce (p. 34)

Object reference (p. 33)
Per-class protection (p. 20}
Per-object protection (p. 20)
Polymorphism (p. 25)

Property (p. 14)

Protocol (p. 20}

Static binding (p. 34)

Subclass (p. 21)

Superclass (p. 21)

Use relationship (p. 26)

REVIEW QUESTIONS

1. What i5 an object?
2. What is the main advantage of object-oriented development?
3. What is polymorphism?

CHAPTER 2: OBJECT BASICS 37T

4. What is the difference between an object’s methods and an object’s attributes?
S, How are classes organized in an object-oriented environment?

6. How does object-oriented development eliminate duplication?

7. What is inheritance?

8. What is data abstraction?

9. Why is encapsulation important?
10. What is a pratocal?
11. What is the difference between a method and a message?
12. Why is polymorphism useful?

13. How are objects identified in an object-oriented system?

14, What is the lifetime of an object and how can you extend the lifetime of an object?
15. What is association?

16. What is a consumer-producer relationship?

17. What is a formal class?

18. What is an instance?

For questions 19-25 match the term to the definition:

a object

b. class

¢, method

d. class hierarchy

e, inheritance

f. message

2. polymorphism

19, An object templale.

20. A umit of functionality.

21 The scheme for representing the relationships between classes.

22, The generic message-sending scheme that allows flexibility in design.
3. The scheme for sharing operations and data between related classes.
24, A high-level instruction to perform an operafion on an object.

25 The implementation of a high-level operation for a specific class of objects.

PROBLEMS

1. Identify the attributes and methods of a dishwasher object

2. Identify all the attributes and methods of the checkbook object. Write a short descrip-
tion of services that each method will provide.

. If you are in market (o buy a car, which aitributes or services are relevant (o you,

. Tdentify objects in a payroll system.

. Create a class hierarchy to organize the following drink classes: aleoholic. nonaleoholic,
grape juice, mineral water, lemopade, beer, and wine, (Hint: At the top of the hierarchy
are the most general classes and at the bottom are the most specific. Classes should be
related to one another in superclass-subclass hierarchies.)

6. Assume the drinks in problem 6 have the following characteristies:

o L

* Alcoholic dnnks are not for drivers or children.

= Monalcoholic drinks are thirst quenching.

= Wine is made of grapes and for adulis only,

= Grape juice is made from grapes and has the taste of a fruit.

3B PART ONE: INTRODUCTION

« Mineral water is bubbling and does not taste like fruit.
* Lemonade is bubbling and tastes like a fruit,

How would you define the class hierarchy? (Hint: Utilize the inheritance capability of
an object-oriented system.)

REFERENCES
I. Booch, Grady, Safrware Engineering with Ada, 2d ed. Menlo Park, CA: Benjamin-

2

3

Cummings, 1987,

Booch, Grady. Sofrware Components with Ada, Structures, Tools, and Subsystems,
Menlo Park, CA: Benjamin-Cummings, 1987,

Booch, Grady. Objecr-Oriented Design with Applications, 2d ed. Menlo Park, CA;
Benjamin-Cummings, 1994,

. Coad, P.. and Yourdon, E. Obfecr-Oriented Design. Englewood Cliffs, NJ: Yourdon

Press Computing Series, 1991,

. Dahl, O. 1. and Nygaard, K. "SIMULA—An Agol Based Simulation Language.”

Cemmunications of the ACM 9, no, 9 (1966), pp. 6T1-78,

. Garfinkel, Simson L.; and Michae] K. Mahoney, NeXTSTEP Programming Step One:

Object-Oriented Applications, New York: Springer-Verlag, 1993,

. IBM. "Human-User Intéraction, Object-Orented User Interface.” hitp:/fwww.ibm,

comyfibovhed, 1997,

. Kim, Won. Introduction to Obfect-Oriented Darabaseés. Cambridge, Ma: The MIT

Press, 1990,

. King, Gary Warren. “Object-Oriented Really Is Better Than Structured™ 1994,

hittpilfwww.oz.net/~gking/whyoop.htm.

. LaLonde, Wilf R.; and Pugh, John R. Inside Smalltalk, vol.l. Englewood Chiffs, NE

Prentice-Hall Engineering, Science, and Math, 1990,

. Rumbaugh, James; Blaha, Michael; Permeriani, William; Eddy, Frederick; and

Lorensen, William. Object-Oriented Modeling and Design. Englewood Cliffs; NJ:
Prentice-Hall, 1991,

LSHARTER .3 _ Rt e

Object-Oriented Systems
Development Life Cycle

He who does not fay his foundations
beforehand may by great abilities do
o afterwards, although with great
trouble to the architect and danger 1o
the building.

—MNiccole Machiavelli
The Prinice

Chapter Objectives

You should be able to define and understand
* The software development process.

* Building high-quality software.

* Object-oriented systems development.

* Use-case driven systems development,

* Prototyping.

* Component-based development.

* Rapid application development.

3.1 INTRODUCTION

The essence of the software development process that consisis of analysis, design,
implementation, testing, and refinement is to transform users’ needs MG 3 Sofie
ware solution that satisfies those needs. However, some peaple view the software
development process as interesting but feel it has little importance in developing
software. It is tempting to ignore the process and plunge into the implementation
and programming phases of software development, much like the builder who
would bypass the architect. Some programmers have been able to ignore the coun-
sel of systems development in building a system; but, in general, the dynamics of
software development provide little room for such shortcuts. and bypasses have
been less than successful. Furthermore, the object-oriented approach requires a
more rigorous process to do things right. This way, you need not see code until af-
ter about 25 percent of the development time, because you need to spend more
time gathering requirements, developing a requirements model and an analysis

39

40 PART ONE: INTRODUCTION

model, then turning them into the design model. Now, you can develop code
quickly—you have a recipe for doing it. However, you should construct a proto-
type of some of the key system components shortly after the products are selected,
to understand how easy or difficult it will be to implement some of the features of
the system. The prototype also can give users a chance to comment on the usabil-
ity and usefulness of the design and let you assess the fit between the software
toals selected, the functional specification, and the users’ needs.

This chapter introduces you to the systems development life cycle in general
and, more specifically, to an object-oriented approach to software development.
The main point of this chapter is the idea of building software by placing empha-
sis on the analysis and design aspects of the software life cycle. The emphasis is
intended to promote the building of high-quality software (meeting specifications
and being adaptable for change). The software industry previously suffered from
the lack of focus on the early stages of the life cycle [5].

3.2 THE SOFTWARE DEVELOPMENT PROCESS

System development can be viewed as a process, Furthermore, the development it-
self, in essence, is a process of change, refinement, transformation, or addition to
the existing product. Within the process, it is possible to replace one subprocess
with & new one. as long as the new subprocess has the same interface as the old
one, to allow it to fit into the process as a whole. With this method of change, it
is possible to adapt the new process. For example, the object-oriented approach
provides us a set of rules for describing inheritance and specialization in a con-
sistent way when a subprocess changes the behavior of its parent process.

The process can be divided into small, interacting phases—subprocesses. The
subprocesses must beé defined in such a way that they are clearly spelled out, to
allow each activity to be performed as independently of other subprocesses ds
possible. Each subprocess must have the following [11:

+ A description in terms of how it works
= Specification of the input required for the process
» Specification of the output to be produced

The software development process also can be divided into smaller, interacting
subprocesses, Generally, the software development process can be viewed as a se-
ries of transformations, where the cutpul of one transformation becomes the in-
put of the subsequent transformation (see Figure 3—1):

» Transformation | (analysis) translates the users’ needs into system requirements
and responsibilities. The way they use the system can provide insight into the
users’ requirements, For example, one use of the system might be analyzing an
incentive payroll system, which will tell us that this capacity must be included
in the system reguirements,

« Transformation 2 (design) beging with a problem statement and ends with a de-
tailed design that can be transformed into an operational system. This transfor-
mation includes the bulk of the software development activity. including the

CHAFTER 3. OBJECT-ORIENTED SYSTEMS DEVELOPMENT LIFE cvole 441

Prohiem
M i) Statemests
What are the uses
of the system? Analysis
Transforrmanion 2
Syslem
Transformation 3 Sidiirioe
Proxduct

FIGURE 3-1
Software process feflecting transformation from needs to a software product that satisties thoge
regeds;.

definition of how to build the software, its development, and its testing. It also
includes the design descriptions, the program, and the testing materials.

* Transformation 3 (implemeniation) refines the detailed design into the sysiem
deployment that will satisfy the users’ needs. This takes into account the equip-
ment, procedures, people, and the like. It represents embedding the software
product within its operational environment. For example, the new compensaticn
method is programmed, new forms are put to use, and new reports now can be
printed. Here, we try to answer the following question: What procedures and
resources are needed to compensate the employees under the new accounting
system?

An example of the software development process is the waterfall approach,’
which starts with deciding whar is to be done (what is the problem). Once the re-
quirements have been determined, we next must decide how to accomplish them.
This is followed by a step in which we do ir, whatever “it" has reguired us to do.
We then must rest the result to see if we have satisfied the users’ requirements. Fi-
nally, we use what we have done (see Figure 3-2),

In the real world, the problems are not always well-defined and that is why the
waterfall model has limited utility. For example, if a company has experience in
building accounting systems. then building another such product based on the ex-
isting design is best managed with the waterfall model, as it has been described.
Where there is uncertainty regarding what is required or how it ¢an be built, the
waterfall model fails. This model assumes that the requirements are known before
the design begins, but one may need expenence with the product before the re-

"Wany in the software development community feel that the waterfall model has: been discarded,
whereas others beligve it offers a high-level representation of the software process,

FIGURE 3-2
Thi waterfall software development procass,

quirements can be fully understood. It also assumes that the requirements will re-
main static over the development cycle and that a product delivered months after
it was specified will meet the delivery-time needs.

Finally, even when there is a clear specification, it assumes that sufficient de-
sign knowledge will be available to build the product. The waterfall model is the
best way to manage a project with a well-understood product, especially very large
projects. Clearly, it is based on well-established engineering principles, However.
ite failures can be traced to its inability to accommodate software’s special prop-
erties and its inappropriateness for resolving partially understood issues: further-
more, it neither emphasizes nor encourages software reusability.

After the system ig installed in the real world, the environment frequently
changes, altering the accuracy of the original problem statement and, consequently,
generating revised software requirements. This can complicate the software devel-
opment process even more. For example, a new class of employees or another shift
of workers may be added or the standard workweek or the piece rate changed. By
definition, any such changes also change the environment, requiring changes in the

programs. As each such request is processed, system and programming changes

make the process increasingly complex, since each request must be considered in
regard o the original statement of needs as modified by other requests.

3.3 BUILDING HIGH-QUALITY SOFTWARE

The software process transforms the users’ needs via the application domain to &
software solution that satisfies those needs. Once the system (programs) exists, we
must test it to see if it is free of bugs. High-quality products must meet users’ needs
and expectations. Furthermore, the products should attain this with minimal or no
defects, the focus being on improving products (or services) priof 1o delivery rather
than correcting them after delivery. The ultimate goal of building high-quality soft-

ware is user satisfaction. To achieve high quality in software we need to be able

to answer the following questions:

« How do we determine when the system is ready for delivery?
« Is it now an operational system that satisfies users’ needs?

CHAPTER 3: OBJECT-ORIENTED SYSTEMS DEVELOPMENT LIFE CYCLE 43

* Is it correct and operating as we thought it should?
= Does it pass an evaluation process?

There are two basic approaches 1o systems testing. We can test a system ac-
cording to how it has been built or, aItemauwﬂ}f. what it should do. Blum [3] de-
scribes a means of system evaluation in terms of Tour quality measures: corre-

spondence, correctness, verification, and validation. Correspondence measures
how well the delivered system matches the needs of the operational environment,
as described in the original requirements statement, Validation 1s the task of pre-
:in:tmg cmrespﬂndenm: True correspondence cannol be determined until the 55~
tem 15 i place (see Figure 3-3), Correciness measures the consistency of the
product requirements with respect to t o the ¢ design specification. Blum argues that
L'engmtmn is the exercise of determining correctness. However, comeciness always
i5 objective, Given a specification and a product, it should be possible to determine
if the product precisely satisfies the requirements of the specification, For exam-
ple. does the payroll system accurately compute the amount of compensation?
Does it report productivity accurately and to the satisfaction of the workers, and
does it handle information as originally planned?

Validation, however, is always subjective, and it addresses a different issue—
the appropriateness of the specification. This may be considered 20/20 hindsight:
Did we uncover the true users' needs and therefore establish the proper design? If
the evaluation criteria could be detailed, they would have been included in the
specification. Boehm [4] observes that these guality measures, verification and val-
idation, answer the following questions:

« Verification, Am | building the product right?
* Validation. Am 1 building the right product?

Validation begins 45 soon as the project starts, but verification can begin only
after a specification has been accepted, Verification and validation are independent

FIGURE 3-3
Four quality measures (correspandence, cormectness, valldation, and verification) for software
evaluation.

< Validation e
- -+ Vernification >
| ng—b Bequirements f——— ol Dhsign ———pi Software
¢ Comesingss pl :
b >

44 rPaRT ONE: INTRODUCTION

of each other. Tt is possible to have a product that corresponds to the specification.
but if the specification proves to be incorrect, we do not have the right product
for example, say a necessary report is missing from the delivered product, since &
was not included in the original specification. A product also may be correct bt
not correspond to the users’ needs; for example, after years of waiting, a system
ie delivered that satisfies the initial design statement but no longer reflects current
operating practices. Blum argues that, when the specification is informal, it 1s dif-
fieult to separate verification from validation. Chapter 13 looks at the issue of soft-
ware validation and correspondence by proposing & way [0 MCasure user satisfac-
tion and software usability. The next section looks at an object-oriented software
development approach that eliminates many of the shortcomings of traditional

. software development, such as the waterfall approach.

FIGURE 3-4

3.4 OBJECT-ORIENTED SYSTEMS DEVELOPMENT: A USE-CASE
DRIVEN APPROACH *

The object-oriented saftware development life cycle (SDLC) consists of thres
macto processes: object-oriented analysis, object-oriented design, and ohject-on-
ented implementation (see Figure 3—4),

The use-case model can be employed throughout most activities of software de-
velopment. Furthermore, by following the life cycle model of Jacobson, Encsson.

The ohiect-orientad systems development approach. Object-oriented analysis correspands to transtormation 1;
design to transformatian 2, and implementation to transformation 3 ol Figure 3=1.

Build a
Use-Cases Model _l
Ohject
analysii 41
Validete/
Anolysis e
Tteration and Reuse
Using TOOLS User Degign classes, Build ohject Build user
CASE and/or safisfaction define anribuies f—3pd and dynamic = interface and
CHO) programmiing | | usability & and methods maodel projotype
languages QA Tests ——p
T T T User satisfechon 1esl,
' usakility 1es1, and
Implementation Design quality assurance o5t

CHAPTER 3: OBJECT-ORIENTED SYSTEMS DEVELOPMENT LIFE cycLe 45

h
e
S
Dynamic OOA: Object OOD: Dynamic Testing: Usage
mode] mode| model L SCENARGS

FIGURE 3-8
By following the iifa cycle model of Jacobson et al., we produce designs that are traceable
across requiraments, analysis, implamentation, and testing,

and Jacobson [11], one can produce designs that are traceable across requirsments,
analysis, design, implementation, and testing (as shown in Figure 3-5). The main
advantage is that all design decisions can be traced back directly to user require-
ments, Usage scenarios can become test scenarios.

Object-oriented system development includes these activities:

* Object-oriented analysis—use case driven
* Object-oriented design

* Prototyping

* Component-based development

* Incremental testing

Object-oriented sofiware development encourages you to view the problem as
a system of cooperative objects. Furthermore, it advocates incremental develop-
ment, Although object-oriented software development skills come only with prac-
tice. by following the guidelines listed in this baok you will be on the right track
for building sound applications. We look at these activities in detail in subsequent
chapters.

3.4.1 Object-Oriented Analysis—Use-Case Driven

The object-orientéd analysis phase of software development is concerned with
determining the system requirements and identifying classes and their relation-

46 PART ONE: INTRODUCTION

ship to other classes in the problem domain. To understand the system require-

menis, we need to identify the users or the actors, Who are the actors and how do
they use the system? In object-oriented as well as traditional development, sce-
narios are used to help analysts understand requirements, However, these scenar-
ios may be treated informally or not fully documented. Ivar Jacobson [10] came
up with the concept of the use case, his name for a scenario to describe the user—

' compuier system interaction. The concept worked so well that it became a primary
element in system development, The object-oriented programming community has
adopted use cases to a remarkable degree. Scenarios are a great way of examining
who does what in the interactions among objects and what role they play; that is,
their interrelationships. This intersection among objects” roles (o achieve a given
goal is called collaboration. The scenarios represent only one possible example of
the collaboration. To understand all aspects of the collaboration and all potential
actions, several different scenarios may be required, some showing usual behav-
jors. others showing situations involving unusual behavior or exceptions.

In essence, & use case is a typical interaction between a user and a system that
captures users’ goals and needs. In its simplest usage, you capture 4 use case by
talking to typical users, discussing the various things they might want 1o do with
the system.

Expressing these high-level processes and interactions with customers in a sce-

nario and analyzing it is referred o as use-case modeling. The use-casé model rep-
resents the users’ view of the system or users’ needs. For example, consider a word
processor, where a user may want to be able to replace a word with ils synonym or
create a hyperlink. These are some uses of the system, or a system responsibility.

This process of developing uses cases, like other object-oriented activities, is
iterative—once your use-case model is better understood and developed you
should start to identify classes and create their relationships.

Looking at the physical objects in the system also provides us important infor-
mation on objects in the systems. The objects could be individuals, organizations,
machines, units of information, pictures, or whatever else makes up the applica-
tion and makes sense in the context of the real-world system. While developing
the model, objects emerge that help us establish a workable system. It is necessary
10 work iteratively between use-case and object models. For example, the objects
in the incentive payroll system might include the following examples:

The employee, worker, supervisor, office administrator.
The paycheck.

The product being made.

The process used to make the product.

Of course, some problems have no basis in the real world. In this case, it can
be useful to pose the problem in terms of analogous physical objects, kind of a
mental simulation. It always is possible to think of a problem in terms of some
kinds of objects, although in some cases, the objects may be synthetic or esoteric,
with no direct physical counterparts. The objects need to have meaning only within

CHAPTER 3: OBJECT-ORIENTED SYSTEMS DEVELOPMENT LIFE CycLE 47

the context of the application’s domain, For example, the application domain might

T udeais]

be a payroll system; and the tangible objects might be the paycheck, employee,
worker, supervisor, office administrator: and the intangible objects might be tables,
data entry screen, data structures, and so forth.

Documentation is another important activity, which does not end with object-

—

oriénted analysis but should be carried out throughout the system development.
However, make the docurfiéntation as short as possible, The 80-20 rule generally
applies for documentation: 80 percent of the work can be done with 20 percent of
the documentation, The trick is to make sure that the 20 percent is easily accessi-
ble and the rest (80 percent) is available to those (few) who need to know. Re-
member that documentation and modeling are not separate activities, and good

modeling implies good documentation.

3.4.2 Object-Oriented Design
The goal of object-oriented design (OOD) 15 to design the classes identified dur-
mg the analysis phase and the user interface, During this phase, we identify and
define additional objects and classes that support implementation of the require-
ments [8]. For example, during the design phase, you might need to add abjects
for the user interface to the system (e.g., data entry windows, browse windows).
Object-oriented design and object-oriented analysis are distinct disciplines, but
they can be intertwined. Object-oriented development is highly incremental; in other
words, you start with object-oriented analysis, model it, create an object-oriented
design, then do some more of each, again and again, gradually refining and com-
pleting models of the system. The activities and focus of object-oriented analysis
and object-oriented design are intertwined—grown, not built (see Figure 3-4).
First, build the object model based on objects and their relationships, then iter-
ate and refine the model:

* Design and refine classes.

* Design and refine attributes.

* Design and réfine methods,

* Design and refine structures.

* Design and refine associations.

Here are a few guidelines to use in your object-oriented design:

* Reuse, rather than build, a new class. Know the existing classes,

* Design a Jarge number of simple classes, rather than a small number of complex
classes.

* Design methods.

* Critique what you have proposed. If possible, go back and refine the classes.

3.4.3 Prototyping

Although the object-oriented analysis and design describe the system features, it
imporiant to construct a prototype of some of the key system components shortly

48 pasT OME: INTRODUCTION

after the products are selected. It has been said “a picture may be worth a thou-
sand words, but a prototype is worth a thousand pictures”[author unknown]. Not
only is this true, it is an understatement of the value of software prototyping. Es-
sentially, a prototype is a version of a software product developed in the early
stages of the product’s life cycle for specific, experimental purposes. A prototype
enables you 16 fully understand how easy or difficult it will be to implement some
of the features of the system. It also can give users a chance to comment on the
usability and usefulness of the user interface design and lets you assess the fit be-
tween the software tools selected, the functional specification, and the user needs.
Additionally, prototyping can further define the use cases. and it actually makes
use=case modeling much easier. Building a prototype thal the users are happy with,
along with documentation of what you did, can define the basic courses of action
for those use cases covered by the prototype. The main idea here is to build a pro-
totype with uses-case modeling to design systems that users like and need.

Traditionally, prototyping was used as a “quick and dirty” way to test the de-
sign, user interface, and so forth, something to be thrown away when the “indus-
trial strength” version was developed. However, the new trend, such as uwsing
rapid application development, is to refine the prototype into the final product.
Prototyping provides the developer a means to test and refine the user interface
and increase the usability of the system. As the underlying prototype design be-
gins to become more consistent with the application requirements, more details
can be added to the application, again with further testing, evaluation, and re-
building, until all the application components work properly within the prototype
framework.

Prototypes have been categorized in various ways. The following categones are
some of the commonly accepted prototypes and represent very distinct ways of
viewing a prototype, each having its own strengths:

« A horizontal prototype is a simulation of the interface (that is, it has the entire
user interface that will be in the full-featured system) but contains no function-
ality. This has the advantages of being very quick to implement, providing a
good overall feel of the system, and allowing users to evaluate the interface on
the basis of their normal, expecteéd perceplion of the system.

« A vertical prototype is a subset of the system features with complete function-
ality. The principal advantage of this method is that the few implemented func-
tions can be tested in great depth. In practice, prototypes are a hybrid between
horizontal and vertical: The major portions of the interface are established so the
user can get the feel of the system, and features having a high degree of risk are
prototyped with much more functionality [7].

« An analysis prototype is an aid for exploring the problem domain, This class of
prototype is used to inform the user and demonstrate the proof of a concept. It
is not used as the basis of development, however, and is discarded when it has
served its purpose. The final product will use the concepts exposed by the pro-
totype, not its code.

+ A domain prototype is an aid for the incremental development of the ultimate

CHAPTER 3 OBJECT-ORIENTED SYSTEMS DEVELOPMENT LIFE cYcLe 49

software solution. It often is used a5 a tool for the staged delivery of subsystems
to the users or other members of the development team. It demonstrates the fea-
sibility of the implementation and eventually will evolve into a deliverable prod-
uct [9].

The typical time required to produce a prototype is anywhere from a few days
to several weeks, depending on the type and function of prototype. Prototyping
should involve representation from all user groups that will be affected by the proj-
ect, especially the end users and management members to ascertain that the gen-
eral structure of the prototype meets the requirements established for the overall
design. The purpose of this review is threefold:

1. To demonstrate that the prototype has been developed according to the specifi-
cation and that the final specification is appropriate,

2. To collect information about errors or other problems in the system, such as
user interface problems that need to be addressed in the intermediate prototype
stage.

3. To give management and ¢veryone connected with the project the first (or it
could be second or third . . .) glimpse of what the technology can provide.

The evaluation can be performed easily if the necessary supporting data is read-
ily available. Testing considerations must be incorporated into the desien and sub-
sequent implementation of the system.

Prototyping is a useful exercise at almost any stage of the development. In fact,
prototyping should be done in parallel with the preparation of the functional spee-
ification. As key features are speécified, prototyping those features usually results
sn-modifications to the specification and even can reveal additional features or
problems that were not obvious until the prototype wias buill.

3.4.4 Implementation: Component-Based Development

Manufacturers long ago learned the benefits of moving from custom development
to assembly from prefabricated components. Component-based manufacturing
makes many products available to the marketplace that otherwise would be pro-
hibitvely expensive. If products, from automobiles (o plumbing fitings o PCs,
were custom-designed and built for each customer, the way business applications
are, then large markets for these products would not exist. Low-cost, high-quality
products would not be available. Modern manufacturing has evolved to exploit two
crucial factors underlying today's markel requirements: reduce cost and time to
market by building from prebuilt, ready-tested components, but add value and dif-
ferentiation by rapid customization to targeted customers [13].

Today, software components are built and tested in-house, using a wide range
of technologies. For example, computer-aided software engineering (CASE) tools
allow their users to rapidly develop information systems. The main goal of CASE
wechnology is the automation of the entire information system’s development life
cycle process using a set of integrated software tools, such ds modeling, method-
ology, and automatic code generation. However, most often, the code generated by

50 ranT OME: INTRODUGCTION

CASE tools is only the skeleton of an application and a lot needs to be filled in
by programming by hand. A new generation of CASE tools is beginning to sup-
port component-based development.

Component-based development (CBD) is an industrialized approach to the soft-
ware development process. Application development moves from custom develop-
ment to assembly of prebuilt, pretested, reusable software components that oper-
ate with each other. Two basic ideas underlie component-hased development, First,
the application development can be improved significantly if applications can be
assembled quickly from prefabricated software components. Second, an increas-
ingly large collection of interpretable software components could be made avail-
able to developers in both general and specialist catalogs. Put together, these two
ideas move application development from a craft activity to an industrial process
fit to meet the needs of modern, highly dynamic, competitive, global businesses.
The industrialization of application development is akin to similar transformations
that oceurred in other human endeavors,

A CBD developer can assemble components to construct a complete software
system, Components themselves may be constructed from other components and
s0 on down o the level of prebuilt components or old-fashioned code written in a
language such as C, assembler, or COBOL. Visual tools or actual code can be used
to “glue” together components. Although it is practical to do simple applications
us‘mg'dﬁﬁ“g'-%sua] glue” (e.g.. by “wiring” components together as in Digitalk’s
Smalltalk PARTS, or IBM's VisualAge), putting together a practical application
still poses some challenges. Of course, all these are “under the hood™ and should
be invisible to end users. The impact to users will come from faster product de-
velopment cycles, increased flexibility, and improved customization features. CBD
will allow independently developed applications to work together and do so more
efficiently and with less development effort [13].

Existing (legacy) applications support critical services within an organization
and therefore cannot be thrown away, Massive rewniting from scratch is not a vi-
able option, as most legacy applications are complex, massive, and often poorly
documented, The CBD approach to legacy integration involves application wrap-
ping, in particular component wrapping, technology. An application wrapper sur-
rounds a complete system, both code and data. This wrapper then provides an in-
terface that can interact with both the legacy and the new software systems (see
Figure 3-6), Off-the-shelf application wrappers are not widely available. At pres-
ent, most application wrappers are homegrown within organizations. However,
with component-based development technology emerging rapidly, component
wrapper technology will be used more widely. ‘

The software components are the functional units of a program, building blocks
offering a collection of reusable services. A software component can request a ser-
vice from another component or deliver its own services on request. The delivery
of services is independent, which means that components work together to ac-
complish a task. Of course, components may depend on one another without in-
terfering with each other. Each component is unaware of the context or inner work-
ings of the other components. In short, the object-oriented concept addresses
analysis, design, and programming, whereas component-based development 18

CHAPTER 3 OBJECT-ORIENTED SYSTEMS DEVELOPMENT LIFE cvoLe 51

Companent wrapper

Ohpen Connectivity

Comparnent wrapper

57

Leguty screens Legacy softwan: packapes
FIGURE 3-6
Reusing legacy system via component wrapging technology.

concerned with the implementation and system integration aspects of software de-
velopment.
- Rapid application development (RAD) is a set of tools and techniques that can

be used to build an application faster than typically possible with traditional meth-

ods. The term often is Used in conjuction with software prototyping. It is widely

“Held that, to achieve RAD, the developer saerifices the quality of the product for

a quicker delivery. THis is not necessarily the case. RAD is concerned primarily
with reducing the “time to market,” not exclusively the software development time.
In fact, one successful RAD application achieved a substantial reduction in time
to market but realized no significant reduction in the individual software cycles
[12]).

RAD does not replace the system development life eycle (see the Real-World
case) but complements it, since it focuses more on process description and can be
combined perfectly with the object-oriented approach. The task of RAD is to build
the application quickly and incrementally implement the design and user require-
ments, through tools such as Delphi, VisualAge, Visual Basic, or PowerBuilder,

After the overall design for an application has been completed, RAD begins.
The main objective of RAD is to build a version of an application rapidly to see
whether we actually have understood the problem (analysis). Further, it determines

whelier the system does what it is supposed to do (design). RAD involves a num-
ber of iterations. Through each iteration we might understand the problem a Tifile

52 PaRT ONE: INTRODUCTION

Real-World Issues on the Agenda

THERE'S NEVER ENOUGH UP-FRONT PLANNING WITH RAD

By Clair Tristram

What's the single largest reason that RAD [rapid ap-
plication development] projacts fail? Poor up-front
planning, according to the experts, “Planning is a
bad waord these days, but | happen fo think ft's a
good idea,” says Carma McClure, vice president of
research at Extended Intelligence Inc., & Chicagoe-
based corisulling firm. *You've got to have control
over the process” Runaway reguirements are-a dan-
gerous problem with RAD.

If you choose RAD methodologies 1o develop
your application, you're vulnerable. You won't have &
hefty set of requirements to protect you from users.
Instead, the same users who are critical to the RAD
equation are the very same people who can be
counted on to change their minds about what they
want. So how do you keep your RAD project on
track and on time? Here are some suggestions.

WRITE THINGS DOWH

Sure, you've gotten rid of the onerous task of cre-
ating a hefty reguirement document by choosing
RAD over the waterfall approach. But don'l make
the mistake of neglecting 1o write down your busi-
ness ohjective at the beginning of the project, and
make sure your clients agree on whal the core re-
quirements should be.

"4 lot of people get stuck in whal we cail 'proto
cyeling' says Richard Hunter, research director al
Gartner Group Ine., in Stamford, CT. “They don'l
know what the business pratdem Is that they're try-
ing ta solve, and in that case it can take a long lime
to find out what you're doing.”

AVOID “SHALLOW" PROTOTYPING
RAD tools make great demos, but can you deliver?

Make sure that your feam understands the under-
lying architecture of the prototypas they develop
and that they can develop prototype features undar
a deadline that actually works, rather than jusi
look pretty. *RAD helps you build a model guickly
notes McClure. “Users can make suggestions and
virtually see the results, But you need to control
yaur team.”

INVOLVE USERS IN COST-BENEFIT DECISIONS
Your users see a prototype interface that seems to
change effortlessly from iteration o iteration and
they may not understand the amount of sffort it will
take to actually get those changes implemeanted.
Make sure they do.

"“We've eliminated the problem by being very
gpecific about the impact of any changes and in-
volving the user leam in setling priorities” says
Rick Irving, director of worldwide sales systems al
American Express Stored Value Group, in Salt Lake

City.

DON'T DEVELOP APPLICATIONS IN ISOLATION
“RAD makes it easy to come up guickly with some-
thirg good for a single group, but that doesn't sat- |
isty the neads of additional groups.” McClure says:
“Will you throw it away and start over?”

To avoid clusters of applications with limited util- |
ity, MeClure recommends honing an understanding
of how your RAD project fits into your company's
strateglc system plan befere you begin. Thal, and
always build with reuse In mind.

Source, Clair Tristram, “Thane's nevar anough up-iron
planning with RAD, PC Wesk 13, no 12 {March 25, 1995).

better and make an improvement, RAD encourages the incremental development
approach of “grow, do not build” software.

Prototyping and RAD do not replace the object-onented software development
model. Instead, in a RAD application, you go through those stages in rapid (or in-
complete) fashion, completing a little more in the next iteration of the prototype.
One thing that you should remember is that RAD tools make great demos. How-
ever, make sure that you can develop prototype features within a deadline that ac-
tually works, rather than just looks good. '

CHAPTER 3. QBJECT-ORIENTED SYSTEMS DEVELOPMENT LIFE cYGLE 53

3.4.5 Incremental Testing

If you wait until after development to test an application for bugs and performance.
you could be wasting thousands of dollars and hours of time. That's what hap-
pened at Bankers Trust in 1992: “Our testing was very complete and good, but it
was costing a lot of money and would add months onto a project,” says Glenn Shi-
mamoto, vice president of technology and strategic planning at the New York bank
[6]. In one case, testing added nearly six months to the development of a funds
transfer application. The problem was that developers would turn over applications
to a quality assurance (QA) group for testing only after development was com-
pleted. Since the QA group wasn't included in the initial plan, it had no clear pic-
ture of the system characteristics until it came time 1o tesl.

3.5 REUSABILITY

A major benefit of object-oriented system development is reusability, and this is
the most difficult promise to deliver on. For an object to be really reusable, much
more effort must be spent designing it. To deliver a reusable object, the develop-
ment team must have the up-front time to design reusability into the object. The
potential benefits of reuse are clear: increased reliability, reduced time and cost for
development. and improved consistency. You must effectively evaluate existing
software companents for reuse by asking the following questions as they apply to
the intended applications [2]:

= Has my problem already been solved?
* Has my problem been partially solved?
* What has been done before to salve a problem similar to this one?

To answer these questions, we need detailed summary information abeut exist-
ing software components. In addition to the availability of the information, we
need some kind of search mechanism that allows us 10 define the candidate object
simply and then generate broadly or narrowly defined queries. Thus, the ideal sys-
tem for reuse would function like a skilled reference librarian, If you have a ques-
tion about a subject area, all potential sources could be identified and the subject
ares could be narrowed by prompting. Some form of browsing with the capability
to provide detailed information would be required, one where specific subjects
could be looked up directly,

The reuse strategy can be based on the following:

* Information hiding (encapsulation).

* Conformance 10 naming standards.

+ Creation and administration of an object repository.

* Encouragement by strategic management of reuse as opposed to constant rede-
velopment,

Establishing targets for 4 percentage of the objects in the project to be reused
(i.e., 50 percent reuse of objects).

54 parT ONE: INTRODUCTION

3.6 SUMMARY

This chapter introduces the system development life eycle (SDLC) in general and
object-oniented and use-case driven SDLC specifically. The essence of the soft-
ware process 15 the transformation of users’ needs through the application domain
into a software solution that is executed in the implementation domain. The con-
cept of the use case, or a set of scenarios, can be a valuable tool for understand-
ing the users’ needs. The emphasis on the analysis and design aspects of the soft-
ware life cycle is intended to promote building high-quality software (meeting the
specifications and being adaptable for change).

High-quality software provides users with an application that meets their needs
and expectations. Four quality measures have been described: correspondence,
correctness, verification, and validation. Correspondence measures how well the
delivered system corresponds to the needs of the problem. Correctness determines
whether or not the system correctly computes the results based on the rules cre-
ated during the system analysis and design. measuring the consistency of product
requirements with respect to the design specification. Verification is the task of de-
termining correctness (am | building the product right?). Validation is the task of
predicting correspondence (am 1 building the right product?).

Object-oriented design requires more rigor up front to do things right. You need
to spend more time gathering requirements, developing a requirements model and
an analysis model, then turning them into the design model. Now, you can develop
code guickly—you have a recipe for doing it, Object-oriented systems develop-
ment consists of three macro processes: object-oriented analysis, object-oriented
design, and object-oriented implementation. Object-oriented analysis requires
building a use-case model and interaction diagrams to identify users’ needs and the
system’s classes and their responsibility, then validating and testing the model,
documenting each step along the way. Object-oriented design ceniers on estab-
lishing design classes and their protocol; building class diagrams, user interfaces,
and prototypes; testing user satisfaction and usability based on usage and use
cases. The use-case concept can be employed through most of the activities of soft-
ware development. Furthermore, by following Jacobson's life cycle model, one can
produce designs that are traceable across requirements, analysis, design, imple-
mentation, and testing,

Component-based development (CBD) is an industrialized approach to software
development. Software components are functional units, or building blocks offer-
ing a collection of reusable services, A CBD developer can assemble components
to construct a complete software system. Components themselves may be con-
structed from other components and o on down to the level of prebuilt compo-
nents or old-fashioned code written in a language such as C, assembler, or COBOL.
The object-oriented concept addresses analysis, design, and programming; whereas
component-based development is concerned with the implementation and system
integration aspects of software development.

The rapid application development (RAD) approach to systems development
rapidly develops software to quickly and incrementally implement the design by
using tools such as CASE.

CHAPTER 3: OBJECT-ORIENTED SYSTEMS DEVELOPMENT LIFE cvcle B5

Reusability is a major benefit of object-oriented system development. It is
also the most difficult promise to deliver. To develop reusable objects. you must
spend time up front to design reusability in the objects.

KEY TERMS

Analysis prototype (p. 48)

Collaboration (p. 46)

Component-based development (CBD) (p. 50)
Correctness (p. 43)

Correspondence (p. 43)

Domain prototype (p. 48)

Horizontal prototype (p. 48)

Object-oriented analysis (p. 45)
Object-oriented design (00D} (p. 47)

Rapid application development (RAD) (p. 51)
Role (p. 46)

Software components (p. 50)

Software development life cycle (SDLC) (p. 44)
Software development process (p. 39)

Use case (p. 46)

Validation (p. 43)

Vertical prototype (p. 48)

Verification (p. 43)

Waterfall approach (p. 41)

REVIEW QUESTIONS

1. Whit 15 the waterfall SDLC?

2. What are some of the advantages and disadvantages of the waterfall process?

3. What is the software development process?

4. What is software correspondence?

5. What is software correciness?

6. Whal is software validation?

7. What is software verification?

8. How is software vérification differént from validation?

9. What is prototyping and why is it useful?
10. What are some of the advantages and disadvantages of prototyping?
1L If you have to choose betwean prototyping and the waterfall approach, which one

would you select and why?

12. Describe the macro processes of the object-oriented system development approach.,
13. What is the object-oriented SDLC? Compare it with traditional approaches.
14. What are some of the object-oriented analysis processes?
15, What are the object-oriented design processes?
16, Whal is use-case modeling?
17. What is object modeling?

56 PuRT ONE: INTRODUCTION

18. Why can users get involved mare easily in prototyping than the traditional software de-
velopment process such as the waterfall approach?

19. What is RAD?

20. Why is CBD importani?

21. Why is reusability important? How does objest-onented software development promote
reusability ?

PROBLEMS

1. Take @ look at the Web site of Poplan software (www. poplin.com). Find out if SA (Sys-
tem Architeet) has repository of objects. Write a report on your findings.

2. What are some of the classes of your university system? (Do not worry if you are noi
sure how to identify objects yet, it will be covered in later chapters. For example, a pos-
sible class might be Professor. Think about otheér objects based on your own personal ex-
perience.)

3. You have been hired as a systern analyst for the Matrix Corporation. Your first assign-
ment is to propose @ new system for communication among employees. Assuming that
you would like to-apply the waterfall approach, what would you do at the "what” phase?
How would you sccomplish it? Should you develop several alternatives or just one, and
why? Come up with several alternatives,

4. Most of the Comnet Bank data processing systems were developed in the late 19605, Al-
though the systems are working properfy at this time and they meet management’s in-
formation needs, an increasing percentage of the systems” development efforis are spent
on maintaining existing programs. In addition, in the past several years, the internal au-
dit department has hired two EDP auditors who specialize in auditing computer code in
these programs. They have found it almost impossible (o follow the code's logic, since
most of the coding is not documented, |s poorly designed and coded, and has been mod-
ified many times {spagheti code). As a result, they have abandongéd direct review of pro-
gram code as an andit technique, Do you think that Comnet Bank has a problem? If so,
what is the nature and cavse of the problem? What do you recommend to correct it?
Should the bank abandon the old system and start from scratch or should it reuse the
legacy system by applying component-based development. Do some research on CBD
and write a report on yvour findings.

1. Anderson, Michael; and Bergstrand, John, "Formalizing Use Cases with Message Se-
guence Chans." Masters thesis, Depariment of Communication Systems at Lund Insti-
tute of Technology, 1993,
. Binder, Robert. “Software: Process Imiprovement: A Case Study.” Software Develop-
ment 2, no. 1 (January 1994).
3. Blum, Bruce 1. Software Engineering, a Helistic View. New York: Oxford University
Press, 1992,

4, Boehm, Barry W. “Verifying and Validating Software Requirements and Design Spec-
ifications " Sofrware (January 1984), pp. 75-88.

5. Booch, Grady. Object Oriented Design with Applications. Menlo Park, CA: Benjamin-
Cummings, 1991,

6. Callaway, Erin. “Continuous Testing Cures the Last-Minute Crunch” PC Week 13, no.
I2 (March 25, 1995),

[

CHAPTER 3: OBIECT-ORIENTED SYSTEMS DEVELOPMENT LIFE CYCLE 57

. Card, D. "The RAD Fad: 15 Timing Really Everything?” [EEE Software Engineering

12, no. 5 (September 1995), pp. 19-22.

. Coad, Peter: and Yourdon, Edward. Object-Oriented Analysiz, 2d ed, Englewoad Cliffs,

MJ: Yourdon Press, Prentice-Hall, 1991,

. Dollas, A. “Reducing the Time to Market Throngh Rapid Prowryping.” [EEE Com-

puiter 28, no. 2 (February 1995), pp. 14-15.

. Jacobson, lvar. Object-Oriented Saftware Engineering: A Use Case Driven Approvach.

Reading, MA: Addison-Wesley, Object Technology Series, 1994,

. Jacobson, Ivar; Ericsgon, Maria; and Jacobson, Agneta. The Object Advantape Busi-

ness Process Reengineering with Object Technology. Reading, MA: Addison-Wesley
Publishing Company, 1995,

. Rafii, F.; and Perkins, S. “Internationalizing Software with Concurrent Engineering.”

JEEE Safrwidre Engineering 12, no. 5 {September 1995), pp. 39-46.

. Shont, Keith, Component Based Development and Object Modeling. Texas Instruments

Software, February 1997

PART TWO

METHODOLOGY,
MODELING, AND
UNIFIED MODELING
LANGUAGE

Objﬂmvoﬁanted methodology is a set of methods. models, and rules for de-
veloping systems. Modeling is the process of describing an existing or pro-
posed system, It can be used during any phase of the software life cycle. A
model is an abstraction of a phenomenon for the purpose of understanding
it. Since a model excludes unnecessary details; it is easier to manipulate
than the real object. Modeling provides a means for communicating ideas
in an easy to understand and unambiguous form while also accommodat-
ing a system’s complexity. In this part we will look at Object-Oriented
Methodologies in Chapter 4, and Unified Modeling Language in Chapter 5.

CHAPTER 4

Object-Oriented
Methodologies

Anvone who observes software develop-
ment cannot but be impressed by ity
repetitive nafure. Over and over again,
programmers weave a nmber of basic
patterns: sorting, searching, reading,
writing, comparing, traversing, alloca-
ing, synchronizing, and so forth, Expe-
rienced programmers know the feeling
of defa vu 5o characteristic of their
trade [18].

Chapter Objectives
You should be able 1o define and understand
* (bject-onented methodologes,
* The Rumbaugh et al. OMT.
* The Booch methodology.
+ Jacobgon's methodologies.
* Patlerns.
* Frameworks,

* Unified approach (UA)

This chapter studies some of the well-known ohject-onented methodologies and
emerging techniques such as use of patterns and frameworks. The chapter con-
cludes with the unified approach (UA), which is a combination of the best prac-
tices and methodologies described in this chapter. The UA is a conceptual model
used in this book for studying object-oriented concepts and system development.

4.1 INTRODUCTION: TOWARD UNIFICATION—TOO MANY
METHODOLOGIES

In the 1980s, many methodologists were wondering how analysis and design meth-
ods and processes would fit into an object-oriented world. Object-oriented meth-
ods suddenly had become very popular, and it was apparent that the technigues to
help people execute good analysis and design were just as important as the object-
oriented concept itself.

61

62 rFuET TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUASE

To get a feel for object-oriented methodologies, let us look at some of the meth-
ods developed in the 1980s and 1990s. This list by no means is complete [14].

* 1986. Booch [6] developed the object-oriented design concept, the Booch
method.

= 1987. Sally Shlaer and Steve Mellor [21] created the concept of the recursive dé-
sign approach.

= 1989. Beck and Cunningham produced class-responsibility-collaboration cards.

= 1990. Wirfs-Brock, Wilkerson, and Wiener [23] came up with responsibility-
driven design.

= 1991. Jim Rumbaugh led a team at the research labs of General Electric to de-
velop the object modeling technigue (OMT) [19].

* 1991, Peter Coad and Ed Yourdon [11] developed the Coad lightweight and pro-
totype-oriented approach to methods.

= 1994, Ivar Jacobson [16] introduced the concept of the use case and object-
oriented software engineering (OOSE).

These methodologies and many other forms of notational language provided
system designers and architects many choices but created a very split, competitive,
and confusing environment. Most of the methods were very similar but contained
a number of often annoving minor differences, and each had a group of practi-
tioners that liked its ideas. The same basic concepts appeared in very different
notations, which caused confusion among the users [14].

The trend in object-oriented methodologies. sometimes called second-generation
object-oriented methods, has been toward combining the best aspects of the most
popular methods instead of coming out with new methodologies, which was the
tendency in first-generation object-oriented methods. In the next section, to give
you a taste of object-oriented methodologies, we will look at some of the most
popular ones.

4.2 SURVEY OF SOME OF THE OBJECT-ORIENTED
METHODOLOGIES

Many methodologies are available to choose from for system development. Each
methodology is based on modeling the business problem and implementing the ap-
plication in an object-ariented fashion; the differences lie primarily in the docu-
mentation of information and modeling notations and language. An application can
be implemented in many ways to meet the same requirements and provide the
same functionality. The largest noticeable differences will be in the trade-offs and
detailed design decisions made. Two people using the same methodology may pro-
duce application designs that look radically different. This does not necessarily
mean that one is right and one is wrong, just that they are different. In the fol-
lowing sections, we look at the methodologies and their modeling notations de-
veloped by Rumbaugh et al., Booch, and Jacobson which are the origins of the
Unified Modeling Language (UML),

Each method has its strengths. The Rumbaugh et al. method is well-suited for

.'I ’ | i e | : J

) 8 b e pre

Py rorr b CHAPTER 4: OBJECT-ORIENTED METHODOLOGIES 63

describing the object model or the static structure of the system. The Jacobson et
al. method is good for producing user-driven analysis models. The Booch method
produces detailed object-oriented design models.

4.3 RUMBAUGH ET AL.'S OBJECT MODELING TECHNIQUE

The object modeling technique (OMT) presented by Jim Rumbaugh and his co-
workers describes a method for the analysis, design, and implementation of a sys-
tem using an object-oriented technique, OMT is a fast, intuitive approach for iden-
tifying and modeling all the objects making up a system. Details such as class
attributes, method, inheritance, and association also can be expressed easily. The
dynamic behavior of objects within a system can be described using the OMT dy-
namic model. This model lets you specify detailed state transitions and their de-
scriptions within a system. Finally, a process description and consumer-producer
relationships can be expressed using OMT's functional model. OMT consists of
four phases, which can be performed iteratively:

L. Analysis. The results are objects and dynamic and functional models.

2. System design. The results are a structure of the basic architecture of the sys-
tem along with high-level strategy decisions.

3. Object design. This phase produces a design document, consisting of detailed
objects static, dynamic, and functional models.

4. Implementation. This activity produces reusable, extendible, and robust code.

OMT separates modeling into three different parts:

1. An object model, presented by the object model and the data dictionary,
2. A dynamic model, presented by the state diagrams and event flow diagrams.
3. A functional model, presented by data flow and constraints.

4.3.1 The Object Model

The object model describes the structure of objects in a system: their identity, re-
lationships to other objects, attributes, and operations. The object model is repre-
sented graphically with an object diagram (see Figure 4—1). The object diagram
contains classes interconnected by association lines. Each class represents a set of
individual objects. The association lines establish relationships among the classes.
Each association line represents a set of links from the objects of one class to the
objects of another class.

4.3.2 The OMT Dynamic Model

OMT provides a detailed and comprehensive dynamic model, in addition to letting
you depict states, transitions, events, and actions. The OMT state transition dia-
gram is a network of states and events (sée Figure 4-2), Each state receives one
or more events, at which time it makes the transition to the next state. The next
state depends on the current state as well as the events.

64 FART TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

Cligns
firstName
lastName -
1 ClientAcoonnd
pinCode Account Transaction
number trapsDate
bikTaincs A:‘cmmr?'runrm‘n:i el il
FES transType
withi 'L amonnt
create Tranzaction postBalance
CheckingAccount
Withdraw CheckingSavingsAcconnt
SavingsAceount
FIGURE 4-1

The OMT object model of a bank system. The boxes represant classes and tha filled triangle
represents specialization, Association betwesn Account and transaction 5 one oo many; since
one account can have many transactions, the filled cincle represents many (Zero or morej, The
relationship betwen Client and Account classes [s one to one: A cllent can have only one ac-
count and account can belong o only one person (in this madel joint accounts are not allowed).

4.3.3 The OMT Functional Model

The OMT data flow diagram (DFD) shows the flow of data between different
processes in a business, An OMT DFD provides a simple and intuitive method
for describing business processes without focusing on the details of computer sys-
tems [3].

Data flow diagrams use four primary symbols:

1. The process is any function being performed; for example, verify Password or
PIN in the ATM system (see Figure 4-3).

2, The dara flow shows the direction of data element movement; for example, PIN
code.

3. The data store is a location where data are stored, for example, account is a
data store in the ATM example.

4. An external entity is a source or destination of a data element; for example, the
ATM card reader.

Overall, the Rumbaugh et al. OMT methodology provides one of the strongest
tool sets for the analysis and design of object-oriented systems,

CHAPTER 4: OBJECT-ORIENTED METHODOLOGIES B5

No account has been selected

type (withdraw,
deposit, wansfer)

FIGURE 4-2

State transition diagram for the bank application user Interface; The round boxas represent
ztates and the arrows represent transitions.

4.4 THE BOOCH METHODOLOGY

The Booch methodology is a widely used object-oriented method that helps you
design your system using the object paradigm. It covers the analysis and design
phases of an object-oriented system. Booch sometimes is criticized for his large
set of symbols. Even though Booch defines a lot of symbols to document almost
every design decision, if you work with his method, you will notice that you never
use all these symbols and diagrams, You start with class and object diagrams (see
Figures 4-4 and 4-5) in the analysis phase and refine these diagrams in varous
steps. Only when you are ready to generate code, do you add design symbaols—
and this is where the Booch method shines, you can document vour object-oriented
code. The Booch method consists of the following diagrams:

Class diagrams

Object diagrams

State transition diagrams
Module diagrams
Process diagrams
Ineraction diagrams

686 PART TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

ATMEid ot ol glectBank. Yeosieersoorsiivisionio v

reader
................................... -
User keyboard o5
enlry
IRC oML bad
nttype { sebeol accommnt .r....”.-.".u"mlﬁi P
User screen
selection
amount,
ATM data flow diagram tranaction type l ;
kit |00 0 T TR e e Ye e de e b v >
p—— Comimen!
OMT data flow
Legend: | Process (:) Diata store Data flow —# Extemal entity I:]
FIGURE 4-3

OMT DFD of the ATM system. The data fiow lines include armows to show the direction of dats
elament movemant. The crcles represent procassas. The boxes represent external antities, A
data store roveals the storage of data.

The Booch methodology prescribes a macro development process and a micro
development process.

4.4.1 The Macro Development Process

The macro process serves as a controlling framework for the micro process and
can take weeks or even months. The primary concem of the macro process is tech-
nical management of the system. Such management is interested less in the actual
object-oriented design than in how well the project corresponds to the require-
ments set for it and whether it is produced on time. In the macro process, the tra-
ditional phases of analysis and design to a large extent are preserved [4].

The macro development process consists of the following steps:

1. Conceptualization. During conceptualization, you establish the core require-
ments of the system. You establish a set of goals and develop a prototype to
prove the concept.

2. Analysis and development of the model. In this step, you use the class diagram
o describe the roles and responsibilities objects are to carry out in performing

CHAPTER 4: OBJECT-ORIENTED METHODOLOGIES BT

FIGURE 4-4
Object modeling using Booch notation. The arrows represent specialization; for example, he
class Taurus is subclase of the class Ford,

the desired behavior of the system. Then, you use the object diagram to describe
the desired behavior of the system in terms of scenarios or, alternatively, use the
interaction diagram to describe behavior of the system in terms of scenarios.

3. Design or create the system architeciure. In the design phase, you use the class
diagram to decide what classes exist and how they relate to each other. Next,
you use the object diagram to decide what mechanisms are used to regulate how
objects collaborate. Then, you use the module diagram to map out where each
class and object should be declared. Finally, you use the process diagram to de-
termine to which processor to allocate a process. Also, determine the schedules
for multiple processes on each relevant processor.

4. Evelution or implementation. Successively refine the system through many it-
erations. Produce a stream of software implementations (or executable re-
leases), each of which is a refinement of the prior one.

5. Maintenance. Make localized changes to the system 1o add new requirements
and eliminate bugs.

4.4.2 The Micro Development Process

Each macro development process has its own micro development processes. The
micro process is a description of the day-to-day activities by 4 single or small
group of software developers, which could look blurry to an outside viewer, since
the analysis and design phases are not clearly defined.

B8 eART TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

Operator: TumOfTAlarm

Enabled

SoundAlarm

Silenced ‘Sounding

SilenceAdarn

Enable

FIGURE 4-5

An alarm class state transition diagram with Booch notation, This diagram can capiure the state
ot & class based on a stimulus. For example, a stimulus causes the clasa o perform Some pros
ceasing, followed by a transition to another state. In this case, the alarm silenced state can be
changed to alarm sounding state and vice versa,

Diizahle

AlnrmiFixed

The micro development process consists of the following steps:

L. Identify elasses and objects.

2. Identify class and object semantics.

A, Tdentify clasy and object relationships.

4. Identify class and object interfaces and implementation.

4.5 THE JACOBSON ET AL. METHODOLOGIES

The Jacobson et al. methodologies (e.g., object-oriented Business Engineering
(OOBE), object-oriented Software Engineering (OOSE), and Objectory) cover the
entire life cycle and stress traceability between the different phases, both forward
and backward. This traceability enables reuse of analysis and design work, possi-
bly much bigger factors in the reduction of development time than reuse of code.
At the heart of their methodologies is the use-case concept, which evolved with
Objectory (Object Factory for Software Development).

4.5.1 Use Cases

Use cases are scenarios for understanding system requirements. A use case is an
interaction between users and a system. The use-case model captures the goal of

CHAPTER 4: DBJECT-ORIENTED METHODOLOGIES 69

the user and the responsibility of the system to its users (see Figure 4-6). In the
requirements analysis, the use cases are described as one of the following |4]:

+ Nonformal text with no clear flow of events.

« Text, easy to read but with a clear flow of events to follow (this is a recom-
mended style).

» Formal style using pseudo code.

The use case description must contain

* How and when the use case begins and ends.

» The interaction between the use case and its actors, including when the interac-
tion occurs and whar is exchanged.

* How and when the use case will need data stored in the system or will store data
in the system.

* Exceprions to the flow of events.

» How and when concepts of the problem domain are handled.

Every single use case should describe one main flow of events. An exceptional
or additional flow of events could be added. The exceptional use case extends dn-
other use case to include the additional one. The use-case model employs extends
and uses relationships. The extends relationship is used when you have one use
case that 1s similar to another use case but does a bit more. In essence, it extends
the functionality of the original use case (like a subclass). The uses relationship
reuses common behavior in different use cases.

Use cases could be viewed as concrete or abstract. An abstract use case is not
complete and has no actors that initiate it but is used by another use case. This in-
heritance could be used in several levels. Absiract use cases also are the ones that
have uses or extends relationships.

FIGURE 4-6

Some uses of a library. As you can gee, thessa are extemal views of the fibrary system from an
aclor such as a member, The simpier the use case, the more effective it will be, It 15 unwise 1o
caplure all of tha delails right at the start; you can do that later,

Libeary

Checking oul books

Getting an interlibrary loan
Doing research

Member :
Rewding books, news

—I""'.-F.-'_Fr.-.-

Purchasing supplies

T

Supplier

T0 PART TWO: METHODOLDGY, MODELING, AND UNIFIED MODELING LANGUAGE

FIGURE 4-7

4.5.2 Object-Oriented Software Engineering: Objectory

Object-oriented software engineering (OOSE), also called Objectory, is a methad
of object-oriented development with the specific aim to fit the development of
large, real-time systems. The development process, called wse-case driven devel-
opment, siresses thal use cases are involved in several phases of the development
{see Figure 4-7), including analysis, design, validation, and testing. The use-case
scenario begins with a user of the system initiating a sequence of interrelated
events.

The system development method based on OOSE, Objectory, is a disciplined
process for the indusirialized development of software, based on a use-case driven
design. It is an approach to object-oriented analysis and design that centers on un-
derstanding the ways in which a system actually is used. By organizing the analy-
sis and design models around sequences of user interaction and actual usage sce-
narios, the method produces systems that are both more usable and more robust,
adapting more easily to changing usage. Jacobson et al.’s Objectory has been de-
veloped and applied to numerous application areas and embaodied in the CASE tool
systems.

Objectory is built around several different models:

* Use case-model. The use-case model defines the outside (actors) and inside (use
case) of the system’s behavior.

= Domain object model. The objects of the “real” world are mapped into the do-
main object model.

* Analysis object model. The analysis object model presents how the source code
(implementation) should be carried out and written.

s Implementation model. The implementation model represents the implementa-
tion of the system.

» Test model. The test model constitutes the test plans, specifications, and reports.

The use-case model I3 considered In every model and phase,

Use-cage model

e

=3

Express in Tesred in

| Srrwctired by Reun-#d by Imiplemenied by | l

FO«—O (e] @ oK

w, O K ‘K.D I'e MOT OK
Annlysis Deslgn Implementation Testing
model el mode] micndal

CHAPTER 4: OBJECT-ORIENTED METHODOLOGIES T1

The maintenance of each mode! is specified in its associated process. A process
is created when the first development project starts and is terminated when the de-
veloped system is taken out of service.

4.5.3 Object-Oriented Business Engineering

Object-oriented business engineering (OOBE) is object modeling at the enterprise
level. Use cases again are the central vehicle for modeling, providing traceability
throughout the software engineering processes.

* Analysis phase. The analysis phase defines the system to be built in terms of the
problem-domain object model, the requirements model, and the analysis model.
The analysis process should not take into account the actual implementation en-
vironment. This reduces complexity and promotes maintainability over the life
of the system, since the description of the system will be independent of hard-
ware and software requirements. Jacobson [16] does not dwell on the develop-
ment of the problem-domain object model, but refers the developer to Coad and
Yourdon's [11] or Booch's [6] discussion of the topic, who suggest that the cus-
tomer draw a picture of his view of the system to promote discussions. In their
view, a full development of the domain model will not localize changes and
therefore will not result in the most “robust and extensible structure.” This maedel
should be developed just enough to form a base of understanding for the re-
quirements model. The analysis process is iterative but the requirements and
analysis models should be stable before moving on to subsequent models. Ja-
cobson et al. suggest that prototyping with a tool might be useful during this
phase to help specify user interfaces.

* Design and implementation phases, The implementation environment must be
identified for the design model. This includes factors such as Database Man-
agement System (DBMS), distribution of process, constraints due 1o the pro-
gramming language; available component libraries, and incorporation of graph-
ical user interface tools. It may be possible to identify the implementation
environment concurrently with analysis. The analysis objects are translated into
design objects that fit the current implementation environment.

» Testing phase. Finally, Jacobson describes several testing levels and techniques:
The levels include unit testing, integration testing, and system testing.

4.6 PATTERNS

An emerging idea in systems development is that the process can be improved sig-
nificantly if a system can be analyzed, designed, and built from prefabricated and
predefined system components. One of the first things that any science or engi-
neering discipline must have is a vocabulary for expressing its concepts and a lan-
guage for relating them to each other. Therefore, we need a body of literature 10
help software developers resolve commonly encountered, difficult problems and a
vocabulary for communicating insight and experience about these problems and
their solutions. The primary focus here is not so much on technology as on creat-
ing a culture to document and support sound engineering architecture and design [5].

T2 eaRT TWO; METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

In this section, we look at the concept of patterns; and in the next section, we look
at another emerging method, frameworks.

The use of design patierns originates in the work done by a building architect
named Christopher Alexander during the late 1970s. Alexander wrote two books,
A Partern Language [1] and A Timeless Way of Building [2], that, in addition to
giving examples, described his rationale for documenting patterns. Alex ander’s ar-
riculation on pattern work was soon employed by ohject-oriented thinkers looking
for ways to describe commonly occurring design solutions and programming par-
adigms. As described in their seminal work in cataloging program design concepis;
Gamma, Helm, Johnson, and Vlissides [15] say that the design pattern

identifies the key aspects of 3 common design structure that make it useful for creating
a reusable object-oriented design. [Furthermore, it] identifies the participating classes
and instances, their roles and collaborations, and the distribution of responsibilities. [t
describes when it applies, whether it can be applied in view of other design canstraints,
and the consequences and trade-offs of its use.

Another book that helped popularize the use of patierns is Pattern-Oriented
Software Architecture—A System by Frank Buschmann, Regine Meunier, Hans
Rohnert, Peter Sommeriad, and Michael Stal [10]. Currently, patiems are being
used largely for software architecture and design and, more recently, for organiza-
tions, specification models, and many other aspects of software development
Processes,

The main idea behind using patterns is (o provide documentation o help cate-
garize and communicate about solutions to recurring problems. The pattern has a
name to facilitate discussion and the information it represents. A definition that
more closely reflects its use within the patterns community is by Riehle and Zill-
lighoven [20]:

A pattern i [an] instructive information that ¢aptures the essential siructure and insight
of 8 successful family of proven solutions to a recurring problem that arises within a
certain context and system of forees.

The documentation of a pattern, in essence, provides the conlexts upder which
it is suitable and the constraints and forces that may affect a solution or its conse-
guences. Communication about patterns is enabled by a vocabulary that describes
the pattern and its related components such as name, context, motivation, and so-
lution, By classifying these components and their nature (such as the structural or
behavioral nature of the solution), we can categorize paltems.

A pattern involves a general description of a solution to a recurring problem
bundle with various goals and constraints. But a pattern does more than just iden-
tify a solution, it also explains why the solution is needed. For better or for worse,
however, the meteoric rise in popularity of software patterns frequently has caused
them to be overhyped. Patterns have achieved buzzword status: It is immensely
popular to use the word pattern to gamer an audience, However. not every solu-
tion, algorithm, best practice, maxim, or heuristic constitutes a pattern (one or
more key pattern ingredients may be absent). Even if something appears o have

CHAPTER 4: OBJECT-OFIENTED METHODOLOGIES T3

all the requisite pattern components, it should not be considered a pattern until it
has been verified (o be a recurring phenomenon (preferably found in at least three
existing systems, this often is cailed the rule of rhree). A “pattern in waiting,”
which is not yet known to recur, sometimes is called a proto-pattern. Many also
feel it is inappropriate to decisively call something a pattern until it has undergone
some degree of peer scrutiny or review [5]. Coplien [12] explains that a good pat-
tem will do the following:

« It solves a problem. Patterns capture solutions, not just abstract principles or
strategies,

* It is a proven concept. Patterns capture solutions with a track record, not theo-
ries or speculation.

* The solution is not obvious. The best patterns generate a solution 1o a problem
indirectly—a necessary approach for the most difficult problems of design.

* It describes a relationship. Patterns do not just describe modules. but describe
deeper system structures and mechanisms.

* The pattern has a significant human component. All software serves human
comfort or quality of life; the best patterns explicitly appeal to aesthetics and
utility.

The majority of the initial patterns developed focus on design problems and stll
design patterns represent most solutions. However, more reCeqt patterns encom-
pass all aspects of software engineering, including development organization, the
software development process, project planning, requirements engineering, and
software configuration management.

4.6.1 Generative and Nongenerative Patterns

Generative patterns are patterns that not only describe a recurring problem, they
can tell us how to generate something and can be observed in the resulting system
architectures they helped shape. Nongenerative patterns are static and passive:
They describe recurring phenomena without necessarily saying how to reproduce
them. We should strive to document generative patierns because they not only
show us the characteristics of good systems, they teach us how to build them.
Alexander explains that the most useful patierns are generative:

These patterns in our minds are, more or less, mental images of the pattemns in the world:
they are shstract representations of the very morphological rules which define the pat-
terns in the world. However, in one respect they are very different. The patterns in the
world merely exist. But the same patiemns in our minds are dvnamic. Thev have farce,
They are generative. They tell us what 1o do; they tell us how we shall, or may, gener-
ate them: and they tell us too, that under certain circumstances, we must create them,
Each pattern is a rule which describes what you have to do to generate the entity which
it defines, [2, pp. 181-82]

Alexander wants patterns, and especially pattern languages, to be capable of
generating whole, living structures. Part of the desire to ¢reate architectures that

T4 eART TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

emulate life lies in the unigue ability of living things to evolve and adapt to their
ever-changing environments (not only for the sake of individual survival but also
for survival of the species): Alexander wants to impart these same qualities into
his architecture. Similarly, in software, good software architecture is all about be-
ing adaptable and resilient to change. So another aspect of generativity is about
striving to create “living” architecture capable of dynamically adapting to fulfill
changing needs and demands.

The successive application of several patterns, each encapsulating its own prob-
lem and forces, unfolds a larger solution, which emerges indirectly as a result of
the smaller solutions. It is the generation of such emergent behavior that appears
to be what is meant by genmerariviry. In this fashion, a pattern language should
guide its users to generate whole architectures that possess the quality. This par-
ticular aspect of Alexander’s paradigm seems a bit too mystical for some people's
tastes [S).

4.6.2 Patterns Template

Every patiern must be expressed “in the form of a rule [template] which estab-
lishes a relationship between a context, a system of forces which arises in that con-
text, and a configuration, which allows these forces to resolve themselves in that
context” [2].

Currently, several different pattern templates have been defined that eventually
will represent a pattern. Despite this, it is generally agreed that a patiern should
contain ¢ertain essential components. The following essential components should
be clearly recognizable on reading a pattern [S]:

* Name. A meaningful name. This allows us to use a single word or short phrase
to refer to the patiern and the knowledge and structure it describes. Good pat-
tern names form a vocabulary for discussing conceptual abstractions. Some-
times, a pattern may have more than one commonly used or recognizable name
in the literature. In this case, it is common practice to document these nicknames
or synonyms under the heading of aliases or also known as. Some pattern forms
also provide a classification of the pattern in addition to its name,

= Problem. A statement of the problem that describes its intent: the goals and ob-
jectives it wanis to reach within the given context and forces. Often the forces
oppose these objectives as well as each other.

* Context. The preconditions under which the problem and its solution seem to re-
cur and for which the solution is desirable. This tells us the pattern’s applicabil-
ity. It can be thought of as the initial configuration of the system before the pat-
tern is applied 1ot

= Forces. A description of the relevant forces and constraints and how they inter-
act or conflict with one another and with the goals we wish to achieve (perhaps
with some indication of their priorities). A concrete scenario that serves as the
motivation for the pattern frequently is employed (see also Examples). Forces
reveal the intricacies of a problem and define the kinds of trade-offs that must be
considered in the presence of the tension or dissonance they create. A good pat-
tern description should fully encapsulate all the forces that have an impact on it.

CHAPTER 4; ORIECT-ORIENTED METHODOLOGIEE T5

» Solution. Static relationships and dynamic rules describing how to realize the de-
sired outcome. This often is equivalent to giving instructions that describe how
to construct the necessary products. The dascﬁptian may encompass pictures, di-
agrams, and prose that identify the palte:rn § structure, its participants, and their
collaborations, to show how the problem is solved. The solution should describe
not only the static structure but also dynamic | behavior. The static structure tcl]s

is what makes the pattern “come alive.” The description of the pattern’s solution
may indicate guidelines to keep in mind (as well as pitfalls to avoid) when at-
tempting a concrete implementation of the solution. Sometimes, possible vari-
ants or specializations of the solution are described as well.

* Examples. One or more sample applications of the pattern that illustrate a spe-
cific initial context; how the pattern is applied to and transforms that context;
and the mﬂulﬁng context left in its wa.ke Examples help the reader understand

show one way the solution might be realized. Easy-to-comprehend examples
from known systems usually are preferred.

* Resulting context. The state or configuration of the s;.rstem after the pattern has
been applied, including the consequences (both good and bad) of applying the
pattern, and other problems and patterns that may arise from the new context. It
describes the postconditions and side effects of the pattern. This is sometimes
called a resolution of forces because it describes which forces have been re-
solved, which ones remain unresolved, and which patterns may now be applic-
able. Documenting the resulting context produced by one pattern helps you cor-
relate it with the initial context of other patterns (a single pattern often is just
one step toward accomplishing some larger task or project).

* Rationale. A Jusnfying explanation of steps or rules in the pattern and also of the
pattern as a whole in terms of how and “'lll" it res-:rlvea its forces in a pamcuiar
Jway to be in alignment with desired goals, principles, and philosophies. It explains
how the forces and constraints are orchestrated in concert to achieve a resonant
harmony. This tells us how the pattern actually works, why it works, and why it is
“good.” The solution component of a pattern may describe the outwardly visible
structure and behavior of the pattern, but the rationale is what provides insight into
the deep structures and key mechanisms going on beneath the surface of the system.

* Related patterns. The static and dynamic relationships between this pattern and
others within the same pattern language or system. Related patterns often share
common forces. They also frequently have an initial or resulting context that is

~Compatiblé with the resulting or initial context of another pattern, Such patterns
might be predecessor patterns whose application leads to this pattern, successor
patierns whose application follows from this pattern, alternative patterns that de-
scribe a different solution to the same problem but under different forces and
constraints, and codependent patterns that may (or must) be applied simultane-
ously with this pattern.

* Known uses, The known occurrences of the pattern and its application within ex-
isting systems. This helps validate a pattern by verifying that it indeed is a

76 PaRT TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGLAGE

proven solution 10 a recurring problem. Known uses of the pattern often can
serve as instructional examples (see also Examples).

Although it is not strictly required, good patterns ofien begin with an abstract
that provides a short summary or overview. This gives readers a clear picture of
the pattemn and gquickly informs them of its relevance to any problems they may
wish to solve {sometimes such a description is called a thumbnail sketch of the pat-
tern, or a pattern thumbnail). A pattern should identify its target audience and
make clear what it assumes of the reader.

4.6.3 Antipatterns

A pattern represents a “best practice,” whereas an antipattern represents “worst
practice” or a “lesson leamed." Antipatterns come in two varieties:

+ Those describing a bad solution to a problem that resulted in a bad situation.
+ Those describing how to get out of a bad situation and how to proceed from there
1o a good solution.

Antipatterns are valuable because often it is just as important (o see and under-
stand bad solutions as to sée and understand good ones, Coplien explains that

The study of anti-patterns is an important research activity. The presence of “good” pal-
terns in @ successful system is not enough; you also must show thal those patterns are
absent in unsuccessful systems. Likewise, it is uséful to show the presence of certain
patterns (anti-paiterns) in unsuccessful systems, and their absence in successful sys-
tems, [12] ¢

4.6.4 Capturing Patterns

Writing good patterns is very difficult, explains Appleton [5]. Patterns should pro-
vide not only facts (like a reference manual or users’ guide) but also tell a story
that captures the experience they are trying to convey. A pattern should help its
users comprehend existing systems, cusiomize systems 1o fit user needs, and con-
struct new systems. The process of looking for patterns to document is called pat-
tern mining (or sometimes reverse architecting). An interesting initiative started
within the software community is to share experience with pattemns and develop
an ever-growing repository of patterns. People can contribute new solutions,
lessons learmed (or antipatterns), and more examples within a variety of contexts,

How do you know a pattern when you come across one? The answer is you do
not always know. You may jot down the beginning of some things you think are
patterns, but it may turn out that these are not patterns at all, or they are only pieces
of patterns, simply good principles, or general rules that may form part of the ra-
tionale for a particular pattern. It is important to remember that a solution in which
no forces are present is not a pattern [5].

These guidelines are summarized from Buschmann et al. [10]:

« Focus en practicability. Patterns should describe proven solutions to recurring
problems rather than the latest scientific results.

CHAPTER 4: OBJECT-ORIENTED METHODOLOGIES 77

* Aggressive disregard of originaliry. Pattern writers do not need to be the origi-
nal inventor or discoverer of the solutions that they document.

* Nonanonymous review. Pattern submissions are shepherded rather than reviewed.
The shepherd contacts the pattern author(s) and discusses with him or her how
the patterns might be clarified or improved on.

* Writers' workshops instead of presentations. Rather than being presented by the
individual authors, the patterns are discussed in writers” workshops, open forums
where all attending seek to improve the patterns presented by discussing what
they like about them and the areas in which they are lacking,

* Careful editing. The pattern authors should have the opportunity to incorporate
all the comments and insights during the shepherding and writers” workshops
before presenting the patterns in their finished form.

4.7 FRAMEWORKS

Frameworks are a way of delivering application development patterns to support
best practice sharing during application development—not just within one com-
pany, but across many companies—through an emerging framework market. This
is'not an entirely new idea. Consider the following [22]:

* An experienced programmer almost never codes a new program from scratch—
she'll use macros, copy libraries, and templatelike code fragmenis from earlier
programs to make a start on a new one. Work on the new program begins bjr fill-
ing in new domain-specific code inside the older structures.

* A seasoned business consultant who has worked on many consulting projects
performing data modeling almost never builds a new data model from scratch—
he'll have a selection of model fragments that have been developed over time to
help new modeling projects hit the ground running. New domain-specific terms
will be substituted for those in his library models,

A framework is a way of presenting a genenc solution to a problem that can
be applied to all levels in a development [22]. However, design and software
frameworks are the most popular. A definition of an object-oriented software
framework is given by Gamma et al. [15]:

A framework is @ sét of cooperating classes that make up a reusable design for a spe-
cific class of software. A framework provides architectural guidance by partitioning the
design into absiract classes and defining their responsibilities and collaborations. A de-
veloper customizes a framework 1o a particular application by subclassing and compos-
ing instances of framework classes. The framework captures the design decisions that
are common fo its application domain. Framewaorks thus emphasize design reuse over
code reuse, though o framework will usually include concrete subelasses you can put to
work immediaiély.

A single framework typically encompasses several design patterns. In fact, a
framework can be viewed as the implementation of a system of design patierns.

T8 PART TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

Even though they are related in this manner, it is important to recognize that frame-
works and design pattemns are two distinctly separate beasts: A framework 15 exe-
cutable software, whereas design patterns represent knowledge and expenence
about software. In this respect, frameworks are of a physical nature, while patterns
are of a logical nature: Frameworks are the physical realization of one or more
software pattern solutions; patterns are the instructions for how to implement those
solutions [5].

Gamma et al. describe the major differences between design patterns and frame-
works as follows [15]:

* Design patterns are more abstract than frameworks. Frameworks can be em-
bodied in code, but only examples of patterns can be embodied in code. A
strength of frameworks is that they can be written down in programming lan-
guages and not only studied but executed and reused directly. In contrast, design
patterns have to be implemented each time they are used. Design patterns also
explain the intent, trade-offs, and consequences of a design.

* Design patterns are smaller architectural elements than frameworks. A typical
framework contains several design patterns but the reverse is never true.

= Design patterns are less specialized than frameworks. Frameworks always have
a particular application domain. In contrast, design patterns can be used in nearly
any kind of application. While more specialized design patterns are certainly
possible, even these would not dictate an application architecture,

4.8 THE UNIFIED APPROACH

The approach promoted in this book is based on the best practices that have proven
successful in system development and, more specifically, the work done by Booch,
Rumbaugh, and Jacobson in their attempt to unify their modeling efforts. The uni-
fied approach (UA) (see Figure 1-1) establishes a unifying and unitary framework
-around their works by utilizing the unified modeling language (UML) to describe,
mudel and document the software development process. The idea bchind the UA

bine the best practices, processes, melhadalﬂgzm, and guidelines along with UML
notations and diagrams for better understanding object-oriented concepts and sys-
tem development.

The unified approach to software development revolves around (but is not
limited to) the following processes and concepts (see Figure 4-8). The processes

are:

Use-case driven development
Object-oriented analysis

Object-oriented design

[ncremental development and prototyping
Continuous testing

CHAPTER 4: OBJECT-ORIENTED METHODOLOGIES T9

Develop use Tdentify classes,
;’(%i b cuses, sciivity |q—pl 0P gl reluionships, [d—| o
diagrams Atkgiin attributes, and Eialle
Idantify metord rototyping miethods
]
- | O-O Analysis |
Construction
Component | Repositary ’ LE}"EI’Eﬂ
based of use-Cages Appruach
development design, UL
and past
Continnous expericnces,
testing patlerns,
User satisfaction documeniation
usahility tests, and Uh}fl'l:..d [:ased
guality tracesbility | elin
ASTUTANGCE [e51 &
| 0-ODesign |
o ey Jlpsosall gty
v Axi an 4
methods, _mums layers and fests based on
asgociathon, (tp———— Build UME t—] profotypes o e paves
struciure... class diagram
{ Continnous Testing
FIGURE 4-8

The processes and components of the unified approach.

The methods and technology emploved include

Unified modeling language used for modeling.
Layered approach.
Repository for object-oriented system development patterns and frameworks.

Component-based development (Although, UA promote component-based de-
velopment, the treatment of the subject is beyond the scope of the book.)

The UA allows iterative development by allowing you té go back and forth be-
tween the design and the modeling or analysis phases. It makes backtracking very
easy and departs from the linear waterfall process, which allows no form of back-
tracking.

4.8.1 Object-Oriented Analysis

Analysis is the process of extracting the needs of a system and what the system
must do to satisfy the users’ requirements. The goal of object-oriented analysis is
to first understand the domain of the problem and the system's responsibilities by
understanding how the users use or will use the system. This is accomplished by
constructing several models of the system. These models con te on describ-
ing what the system does rather than how it does mmﬁa

I system from the way it is implemented requires viewing the system from the user’s

B0 FART TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

perspective rather than that of the machine, OOA Process consists of the follow-
ing Steps:

1. Identify the Actors,

2. Develop a simple business process model using UML Activity diagram.
3. Develop the Use Case,

4. Develop interaction diagrams.

5. Identify classes.

4.8.2 Object-Oriented Design

Booch [9] provides the most comprehensive object-oriented design method. Iron-
ically, since it i3 so comprehensive, the method can be somewhat imposing to learn
and mp:cmuy tricky to figure out where to start. Rumbaugh et al.’s and Jacobson
et al's high-level models provide good avenues for getting started. UA combines
these by utilizing Jacobson et al.'s analysis and interaction diagrams, Booch’s ob-
‘ject diagrams, and Rumbaugh et al. g__d_nmaan mudels “Furthermore, by following

Jacobsomet al's life cycle model, we can produce designs that are traceable across
requirements, analysis, design, ¢oding, and testing. OOD Process consists of:

» Designing classes, their attnbutes, methods, associations, structures and proto-
cols, apply design axioms

Design the Access Layer

Design and prototype User interface

User Satisfaction and Usability Tests based on the Usage/Use Cases

lterate and refine the design

4.8.3 Iterative Development and Continuous Testing

You must iterate and reiterate until, eventually, you are satisfied with the system.
Since testing often uncovers design weaknesses or at least provides additional in-
formation you will want to use, repeat the entire process, taking what you have
learned and reworking your design or moving on to reprototyping and retesting.
Continue this refining cycle through the development process until you are satis-
fied with the results. During this iterative process, your prototypes will be incre-
mentally transformed into the actual application. The UA encourages the integra-
tion of testing plans from day | of the project. Usage scenarios can become test
scenarios; therefore, use cases will drive the usability testing. Usability testing is
the process in which the functionality of software is mgasured. Chapter 13 will
cover usability testing.

4.8.4 Modeling Based on the Unified Modeling Language

The unified modeling language was developed by the joint efforts of the leading
object technologisis Grady Booch, Ivar Jacobson, and James Rumbaugh with con-
tributions from many others. The UML merges the best of the notations used by
the three most popular analysis and design methodologies: Booch's methodology,
Jacobson et al's use case, and Rumbaugh et al.'s object modeling technique, The

CHAPTER 4: OBJECT-ORIENTED METHODOLDGIES B1

UML is becoming the universal Jai for modeling systems; it is mtended to
be used to express models of many different kinds and purposes, just as a pro-
gramming language or a natural language can be used in many different ways, The
UML has become the standard notation for object-oriented modeling systems. It

is an evolving notation that still is under d dwelnpment M%
describe and model the analysis and design phases of system development (U
notations will be covered in Chapter 5).

4.8.5 The UA Proposed Repository

In modern businesses, best practice sharing is a way to ensure that solutions to
process and organization problems in one part of the business are communicated
to other parts where similar problems occur. Best practice sharing eliminates du-
plication of problem solving. For many companies, best practice sharing is insti-
tutionalized as part of their constant goal of quality improvement. Best practice
sharing must be applied to application development if quality and productivity are
to be added to component reuse benefits. Such sharing extends the idea of soft-
ware reusability to include all phases of software development such as analysis, de-
sign, aru:l testing [22].

user interfaces in an Eamly accessible manner with a -::nmplelci}.r avatlablz: am:l Bas-
ily utilized format. As we saw previously, central to the discussion on developing
this best practice sharing s the concept of a pattern, Everything from the original
user request to maintenance of the project as it goes to production should be kept
in the repository. The advantage of repositories is that, if your organization has
done projects in the past, abjects in 'rhe repusztnnl:s from those projects might be
elme:nh to a diagram, all its ‘symbols, and all their dependent definitions, t o en-
Ttries—for reuse, e ————

= The UA's underlying assumption is that, if we design and develop applications
based on previous experience, creating additional applications will require no
more than assembling compaonents from the library. Additionally, applying lessons
learned from past developmental mistakes to future projects will increase the
quality of the product and reduce the cost and development time. Some basic ca-
pability is available in most object-driented environments, such as Microsoft
repository, VisualAge, PowerBuilder, Visual C+ +, and Delphi. These reposito-
ries contain all objects that have been previously defined and can be reused for
putting together a new software system for a new application. If a new require-
ment surfaces, new objects will be designed and stored in the main repository for
future use.

The same arguments can be made about patterns and frameworks, Specifica-
tions of the software components, describing the behavior of the component and
how it should be use-d are registered in the repository for future reuse by teams of
developers.

The repository should be accessible to many people. Furthermore, it should be
relatively easy to search the repository for classes based on their attributes, methods,

B2 PART TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

Workstation

FIGURE 4-9
Two-layerad architectura: Imterface and data.

or other characteristics. For example, application developers could select prebuilt
components from the central component repository that maich their business needs
and assemble these components into a single application, customizing where needed.

Tools to fully support a comprehensive repository are not accessible yet, but this
will change quickly and, in the near future, we will see more readily available tools
to capture all phases of software development into a repository for use and reuse.

4.8.6 The Layered Approach to Software Development

Most systems developed with today's CASE tools or client-server application de-
w:]npmtmt cnvirnnmems tend to lean toward what is known as nwo-layered archi-

tines that sit directly behind the screens; for example, a routine that executes when
you click on a button. With every interface you create, you must re-create the busi-
fiess logic needed 1o run the screen. The routines required (o access the data must
exist within every screen. Any change (o the business Togic must be accomplished
in every screen that deals with that portion of the business. This approach results
in objects that are very specialized and cannot be reused easily in other projects.

A better approach to systems architecture is one that isolates the functions of
the interface from the functions of the business. This approach also isolates the
business from the details of the data access (see Figure 4-10). Using the three-

-

FIGURE 4-10
Objects are complately independant of how they are representad or stored.

CHAPTER & DBJECT-ORIENTED METHODOLOGIES B3

FIGURE 4-11
Business objects represant langible elements of tha application. They should be complately in-
dependent of how they are represented to the usar or how thay are physically stored.

layered approach, you are able to creaie objects that represent tangible elements
of your business yet are completely independent of how they are represented 1o the
user (through an interface) or how they are physically stored (in & database). The
Ehree—laycrcd approach consists of 3 view Or user interface layer, i business layer,
and an access layer (see Figure 4—11).

4.8.6.1 The Business Layer The business layer contains all the objects that rep-
resent the business (both data and behavior), This is where the real objects such
as Order, Customer, Line item, Inventory, and Invoice exist. Most modern object-
oriented analysis and design methodologies are generated toward identifying these
kinds of objects.
The responsibilities of the business layer are very straightforward: Model the
objects of the business and how they ﬂmmct to accomplish the business processes,

n creating the business layer, however, it is important to keep in mind a cou-
ple of things. These objects should not be résponsible for the following:

* Displaying details. Business objects should have no special k knowledge of how
they are being displayed and by whom. They are designed to be mdepa—dé‘ﬁt"af
any paricufar interface, 5o the details of how to display an object’should exist
in the interface (view) layer of the object displaying it.

* Data access details. Business objects also should have no special knowledge of
“where they come from.” It does not matter to the business model whether the
data are stored and retrieved via SQL or file VO. The business objects need to
know onl y to whom 16 talk about being stored or retrieved. The business objects
are modeled during the object-oriented analysis.

A business model captures the static and dynamic relationships among a collec-
tion of business objects. Static relationships include object associations and aggre-
gations. For example, a customer could have more than one account or an order
could be aggregated from one or more line items. Dynamic relationships show how
the business objects interact to perform tasks. For example, an order interacts with
inventory to determine product availability. An individual business object can appear
in different business models. Business models also incorporate control objects that

84 PART TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

direct their processes. The business objects are identified during the object-oriented
analysis. Use cases ¢an provide a wonderful tool to capture business objects.

4.8.6.2 The User Interface (View) Layer The user interface layer consists of

objects with which the user interacts as well as the objects needed to manage or

control the interface. The user interface layer also is called the view layer.
This layer typically is responsible for two major aspects of the applications:

« Responding ro wser inferaction. The user interface layer objects must be de-
signed to translate actions by the user, such as clicking on a button or selecting
from a menu, into an appropriate response. That response may be to open or
mma message down into the business layer to start
some business process: remember, the business logic does not exist here, just the
knowledge of which message to send to which business object.

« Displaying business objects. This layer must paint the best possible_picture of
the business objects for the user. In one interface. this may mean entry fields and

fist boxes to display an order and its items. In another. it may be a graph of the

total price of a'customer’s orders.

PR S

The user interface layer's objects are identified during the object-oriented de-
sign phase. However, the requirement for a user interface or how a user will use
the system is the responsibility of object-oriented analysis. Use cases can provide
a very useful tool for understanding user interface requirements.

i e e e 8 b

communicate with the place where the data actually reside, whether it be a rela-

tional database, mainframe, Intemnet, or file. Regardlessof where the data actually

reside, the access layer has fwo major responsibilities:

+ Translate request, The access layer must be able to translate any data-related re-
quests from the business layer into the appropriate protocol for data access. (For
example, if Customer number 55552 needs to be retrieved, the access layer must
be able toscreate the correct SQL statement and execute it.)

* Translate results. The access layer also must be able to translate the data re-
trieved back into the appropriate business objects and pass those objects back up
into the business layer.

Access objects are identified during object-oriented design.

4.9 SUMMARY

In this chapter, we looked at current trends in object-oriented methodologies,
sometimes known as second-generation object-oriented methods, which have been
towird combining the best aspects of today's most popular methods.

Each method has its strengths. Rumbaugh et al. have a strong method for pro-
ducing object models (sometimes known as domain obfect models). Jacobson el al.
have a strong method for producing user-driven requirement and object-oriented

CHAPTER 4: OBJECT-ORIENTED METHODOLOGIES 85

analysis models, Booch has a strong method for producing detailed object-oriented
design models,

Each method has a weakness, too. While Rumbaugh et al’s OMT has strong
methods for modeling the problem domain, OMT models cannot fully express the
requirements. Jacobson et al. deemphasize object modeling and, although they
cover a fairly wide range of the life cycle, they do not treat object-oriented design
to the same level as Booch, who focuses almost entirely on design, not analysis.

Booch and Rumbaugh et al. are object centered in their approaches and focus
more on figuring out what dre the objects of a system, how are they related, and
how do they collaborate with each other. Jacobson et al. are more user centered,
in that everything in their approach derives from use cases or usage scenarios.

The main idea behind a pattern is the documentation to help categorize, com-
municate about, and locate solutions to recurring problems. Frameworks are a way
of delivering application development patterns to support hest practice sharing dur-
ing application development. A single framework typically encompasses several
design patterns. In fact, a framework can be viewed as the implementation of a
system of design patterns. Writing good patterns is very difficult, since it should
not only provide facts but also tell a story that captures the experience the pattern
is trying to convey.

The UA iz an attempt to combine the best practices, processes, and guidelines
along with UML notations and diagrams for better understanding object-oriented
concepts and object-oriented system development. The UA consists of the follow-
INg processes;

* Use-case driven development

* Object-oriented analysis:

* Object-oriented design

* Incremental development and prototyping
* Continuous testing

Futhermore, it utilizes the methods and technologies such as, unified modeling
language, layered approach and promotes repository for all phases of software
development,

KEY TERMS

Abstract use case (p. 69)
Framework (p. 77)
Pattern (p. 72)

Pattern mining (p. 76)
Pattern thumbnail (p. 76)
Proto-patiern (p. 73)

REVIEW QUESTIONS

1. What 1z a method?
2. What is 2 methodology?
3. What is process?

B6 raRT TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

4. Describe the difference between a method and a process?
5. What are the phases of OMT? Briefly describe each phase,
6. What 15 an object model? What are the other OMT models?
7. What is the main advantage of DFD?
8. What is the strength of OMT?
9. Name five Booch diagrams,
10. Briefly describe the Booch system development processes,
11. What is the strength of Booch methodology?
12. What is Objectory?
13. Mame the models in Objectory,
14, What is a use case?
15. What is the reason for having absiract use cases?
16. What are some of the ways that use cases can be described?
17. What must & use case contain?
18, Whan is the strengih of the Jacobson et-al. methodology?
19, Describe the difference between patterns and frameworks.

PROBLEMS

1. Consult the World Wide Web or a library to obtain an article on a real-world apphcaton
that has incorporated a use-case model. Write a summary report of your finding.

2, Consult the Web or the library 1o obtain an amicle on future trends in object-onented
software development. Write a summary of your findings.

3. The best way to learn how to recognize and document useful patterns is by learning from
others who have done it well, Consult the Wehb or the library t0 obtain articles thal de-
scribe patterns (do not choose just one) and try to see if you can recognize all the nec-
essary pattern components and desirable qualitics mentioned in this chapter. When you
see one that appeals to you, ask yoursell why it is good. If you see one you dislike, try
to figure out exactly what about the pattern leaves you unsatisfied. Read as much as you
can, and try to |learn from the masters. For an excellent source on paiterns, obtain the
paper written by Appleton [5]; it provides numerous resources for learning more aboul
patterns. Examing how it is meaningful to you and how it will help you accomplish future
goals. Write & summary of youor findings.

4. Imagine that you are a methodologist and would like to develop your own object-
orented methodology by combining many different object-oriented methodologies, Use
the materials in this chapter, Chapter 3, and the Web to create your own object-oriented
methodology system development life cycle.

5. Consult the Web or the library 1o obtain an article that compares different methodologies.

6. This chapter did not cover all the methodologies lisied earlier. Consuli the Web or your
friendly school library and write a short paper on one of the following methodologies:
a, Shiaer and Mellor's concept of the recursive design approach.

b. Beck and Cunningham's Classes, Regponsibilities;, and Collaborators (CRC) cands,
¢. Wirfs-Brock et al.'s responsibility-driven design.
d. Coad and Yourdon's lightweight and prototype-onented approach to methods.

I, Alexander, Christopher; Ishikawa, Sara; and Silverstein, Murray. A Partern Language:
Towns, Building, Construction. Oxford University Press, 1977,
2, Alexander, Christopher, Timeless Way of Building. Oxford University Press, 1979,

.

4.

10,

1.
12

13

14
15.
16.

I

18,
19.

20
2L

23,

GHAPTER 4: OBJECT-ORIENTED METHODOLOGIES 8T

Alter, Steven, Information Systems: A Management Perspective, 2d ed. Menlo Park,
CA: Benjamin-Cummings, 1996,

Anderson, Michael; and Bergstrand, John, “Formalizing Use Cases with Message Se-
quence Charts™ Master thesis, Department of Communication Systems at Lund Insti-
tote of Technology, 1995,

Brad Appleton. “Patterns and Software: Essential Concepts and Terminology.”
huipiifwww.enternct.com/-~bradapp/docs/pakterns-intro-html, 1997,

. Booch, Grady. Seftware Engincering with Ada, 2d ed. Menlo Park, CA: Benjamin-

Cummings, 1987.

. Booch, Grady. Software Components with Ada, Structures, Tools, and Subsystems.

Menlo Park, CA: Benjamin-Cummings, 1987,

. Booch, Grady. Object-Oriented Design with Applications. Menlo Park, CA: Benjamin-

Commings, 1991,

. Booch, Grady, Jacobson, Ivar; and Rumbaugh, James. The Unified Modeling Lan-

guage, Notation Guide Version 1.0, January 1997,

Buschmann, Frank: Meunier, Regine; Rohnen, Hans: Sommerlad, Peter; and Stal,
Michael. Patern-Oriented Software Architecture—A Svstem of Patterns. Chichester,
UK: Wiley and Sons Lid., 1996,

Coad, Peter; and Yourdon, Edward. Object-Oriented Design. Englewood Cliffs, NJ:
Yourdon Press Computing Series, 1991,

Coplien, James O. Advanced C++ Programming Styles and Idioms, Reading, MA:
Addison-Wesley, 1992

Coplien, James 0. "A Development Process Generative Pattemn Language” Proceed-
ings of Pattern Languages of Program Design 1992, Monticello, August 1994, James
0. Coplien, A Development Process Generative Pattern Language. In James 0. Coplien
and Douglas C, Schmidt, editors, Pattern Languages of Program Design, Chapter 13,
183-237. Addison-Wesley, Reading, MA, 1995,

Fowler, Martin; and Scou, Kendall. UML Distilled: Applying the Standard Object
Modeling Language. Reading, MA; Addison.-Wesley, 19597,

Gamma, E:; Helm, R_; Johnson, R.; and Viissides, J. Design Famerns. Reading, MA:
Addison-Wesley, 1995,

Jacobson, Ivar. Obfect-Oriented Software Engineering: A [Use Case Driven Approach,
Resding, MA: Addison-Wesley, Object Technology Series, 1994,

Jacobson, lvar; Ericsson, Maria; and Jacobson, Agneta. The Object Advantage Busi-
neks Process Reengineering with Object Technology, Reading, MA: Addison-Wesley,
1995,

Meyer, Bertrand, Object-Oriented Software Construction, Hertfordshire, England:
Prentice-Hall Intemational, 1988,

Rumbaugh, James; Blaha, Michael; Premerlani, William; Eddy, Frederick; and
Lorensen, William. Object-Oriented Modeling and Design, Englewood Cliffs, NJ:
Prentice-Hall, 1991.

Riehle, D.; and Ziillighoven, H. “Understanding and Using Patterns in Software De-
velopment” Theory and Practice of Object Svstems 2, no. 1 (1996),

Shiaer, Sally; and Mellor, Stephen 1. Object Lifecycles. Modeling the World in States,
Englewood Cliffs, NJ: Prentice-Hall, 1992,

. Shor, Keith. Component Based Development and Object Modeling. Texas Instruments

Software, February 1997.
Wirfs-Brock, Rebecca; Wilkerson, Brian; and Wiener, Lauren. Designing Object-Oriented
Saftware. Englewood Cliffs, NJ: Prentice-Hall, 1990,

Unified Modeling Language

Model ix a simplified representation of
reality.

—Efraim Turban [9]

Chapter Objectives

You should be able to define and understand
= Modeling and its' benefit.
+ Different types of models.
= Basics of Unified Modeling Language (UML) and its
mindeling diagrams.
= UML Class disgram
= UML Use case diagram.
= UML Sequence diagram.
= UML Collaboration diagram,
+ UML Statechart diagram.
* UML Activity diagram.
* UML Component diagram,
= UML Deployment diagram.

5.1 INTRODUCTION

A model is an abstract representation of a system, constructed to understand the sys-
tem prior to building or modifying it. The term sysrem is used here in a broad sense
to include any process or structure. For example, the organizational structure of a
corporation, health services, computer software, instruction of any sont (including
computers), the national economy, and so forth all would be termed svsrems.

89

90 PART TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

Efraim Turban [9] describes a model as a simplified representation of reality. A
model is simplified because reality is too complex or large and much of the com-
plexity actually is irrelevant to the problem we are trying to describe or solve. A
model provides a means for conceptualization and communication of ideas in a
precise and unambiguous form. The characteristics of simplification and represen-
tation are difficult to achieve in the real world, since they freguently contradict
each other. Thus, modeling enables us to cope with the complexity of a system.

Most modeling techniques used for analysis and design involve graphic lans
guages. These graphic languages are sets of symbols. The symbols are used ac-
cording to certain rules of the methodology for communicating the complex rela-
tionships of information more clearly than descriptive text. The main goal of most
CASE tools is to aid us in using these graphic languages; along with their associ-
ated methodologies.

Modeling frequently is used during many of the phases of the software life cy-
cle, such as analysis, design, and implementation. For example, Objectory is built
around several different models:

e [se-case model, The use-case model defines the outside (actors) and inside (use
case) of the system’s behavior

* Domain object model. Objects of the “real” world are mapped into the domain
object model.

* Analysis object model. The analysis object model presents how the source code
(i.e., the implementation) should be carried out and written.

= [fmplementation model. The implementation model represents the implementa-
tion of the system.

e Test model. The test model constitutes the test plans, specifications, and reports:

Modeling. like any other object-oriented development, is an iterative process.
As the model progresses from analysis to implementation, more detail is added,
but it remains essentially the same.

In this chapter, we look at unified modeling language (UML) notations and di-
agrams. The main idea here is to gain exposure to the UML syniax. semantics. and
modeling constructs. Many new concepts will be introduced here from a model-
ing standpoint. We apply these concepts in system analysis and design contexts in
later chaptérs.

5.2 STATIC AND DYMAMIC MODELS

Models can represent static or dynamic situations. Each representation has differ-
ent implications for how the knowledge about the model might be organized and
represented [7].

5.2.1 Static Model

A static model can be viewed as a snapshot of a system’s parameters atl rest or at
a specific point in time. Static models are needed to represent the siructural or

GHAPTER 5: UNIFIED MODELING LanGUacE 91

static aspect of a system. For example, a customer could have more than one ac-
count or an order could be aggregated from one or more line items. Static models
assume stability and an absence of change in data over time. The unified model-
ing language class diagram is an example of a static model.

5.2.2 Dynamic Model

A dynamic model. in contrast to a static model, can be viewed as a collection of
procedures or behaviors that, taken together, reflect the behavior of a system over
time. Dynamic relationships show how the business objects interact to perform
tasks, For example, an order interacts with inventory to determine product avail-
ahility,

A system can be deseribed by first developing its static model, which is the
structure of its objects and their relationships to each other frozen in time, a base-
line. Then, we can examine changes to the objects and their relationships over
time. Dynamic modeling is most useful during the design and implementation
phases of the system development. The UML interaction diagrams and activity
models are examples of UML dynamic models.

5.3 WHY MODELING?

Building a mode! for a software system prior to its construction is as essential as
having a blueprint for building a large building. Good models are essential for
communication among project teams. As the complexity of systems increases, so
does the importance of good modeling techniques. Many other factors add-to a
project’s success, but having a rigorous modeling language is essential, A model-
ing language must include [2]

* Model elements—f{undamental modeling concepts and semantics.
* Notation—visual rendering of model elements.
* Guidelines—expression of usage within the trade.

In the face of increasingly complex systems, visualization and modeling be-
come essential, since we cannot comprehend any such system in its entirety. The
use of visual notation to represent or model a problem can provide us several ben-
efits relating to clarity, familiarity, maintenance, and simplification.

* Clariry. We are much better at picking out errors and omissions from a graphi-
cal or visual representation than from listings of code or tables of numbers. We
very easily can understand the system being modeled because visual examina-
tion of the whole is possible.

* Familiarity, The representation form for the model may tum out to be similar
to the way in which the information actually is represented and used by the
employees currently working in the problem domain. We, o, may find it more
comfortable to work with this type of representation.

* Maintenance, Visual notation can improve the maintainability of a system. The
visual identification of locations to be changed and the visual confirmation of

92 FAT TWD: METHODOLOGY, MODELING, AND UMIFIED MODELING LANGUAGE

lhose changes will reduce errors. Thus, you can make changes faster, and fewer
errors are likely to be introduced in the process of making those changes.

o Simplificarion. Use of a higher level representation generally results in the use
of fewer but more general constructs, contributing to simplicity and conceptual
understanding,

Turban cites the following advantages of modeling [9]:

o

. Models make it eisier 1o express complex ideas. For example, an architect

builds a model to communicate ideas more easily to clients.

2. The main reason for modeling is the reduction of complexity. Models reduce
complexity by separating those aspects that are unimportant from those that are
important. Therefore, it makes complex situations easier to understand.

3, Models enhance and reinforce learning and training.

4, The cost of the modeling analysis is much lower than the cost of similar ex-
perimentation conducted with a real system.

5, Manipulation of the model {changing variables) is much easier than manipu-

lating a real system.

To summarize, here are a few key ideas regarding modeling:

= A model is rarely correct on the first try.

= Always seek the advice and crticism of others. You can improve a model by
reconciling different perspectives. o

= Avoid excess model revisions, as they can distort the essence of your model. Lex
simplicity and elegance guide you through the process.

5.4 INTRODUCTION TO THE UNIFIED MODELING LANGUAGE

The unified modeling language is a language for specifying, constructing, visual-
izing, and documenting the software system and its components, The UML 15 a
graphical language with sets of rules and semantics. The rules and semantics of a
model are expressed in Enghish, in a form known as ebject constraint language
(DCL). OCL is a specification language that uses simple logic for specifying the
properties of a system. The UML is not intended to be a visual programming lan-
guage in the sense of having all the necessary visual and semantic support to re-
place programming languages. However, the UML does have a tight mapping o a
family of object-oriented languages, so that you can get the best of both worlds.

The goals of the unification efforts were to keep it simple; to cast away ele-
ments of existing Booch, OMT, and OOSE methods that did not work in practice;
to add elements from other methods that were more effective; and to invent new
methods only when an existing solution was unavailable. Because the UML au-
thors, in effect, were designing a language (albeit a graphical one), they had to
strike a proper balance between minimalism (everything is text and boxes) and
ovérengineering (having a symbol or figure for every conceivable modeling ele-
ment). To that end. they were very careful about adding new things: They did not
want to make the UML unnecessarily complex. A similar situation exists with the

CHAPTER 5 UNIFIED MODELING LANGUAGE 93

problemn of ML not sapporting other diagrams. Booch et al. explain that other di-
agrams, such as the data flow diagram (DFD), were not included in the UML be-
cause they do not fit-as cleanly into a consistent object-oriented paradigm. For ex-
ample, activity diagrams accomplish much of what people want from DFDs and
then some; activity diagrams also are useful for modeling work flow. The authors
of the UML clearly are promoting the UML diagrams over all others for object-
oriented projects but do not condemn all other diagrams. Along the way, however,
some things were found that were advantageous to add because they had proven
useful in other modeling practice.
The primary goals in the design of the UML were as follows (2, p. 3]:

1. Provide users a ready-to-use, expressive visual modeling language so they can de-
velop and exchange meaningful models.

Provide extensibility and specialization mechanisms to extend the core concepts.
Be independent of particular programming languages and deveélopmenl processes.
Provide a formal basis for understanding the modeling language.

Encourage the growth of the OO0 tools market,

Support higher-tevel development concepts.

Integrate best pracrices and methodologies,

et e

This section of the chapter is based on the The Unified Medeling Language,
Notation Guide Version 1.1 written by Grady Booch, Ivar Jacobson, and James
Rumbaugh [2].

II.

5.5 UML DIAGRAMS

Every complex system is best approached through a small set of nearly indepen-
dent views of a model; no single view is sufficient. Every model may be expressed
al different levels of fidelity. The best models are connected to reality. The UML
defines nine graphical diagrams:

1. Class diagram (static)
2. Use-case diagram
3. Behavior diagram (dynamic):
3.1. Interaction diagram:
3.1.1. Sequence diagram
3.1.2. Collaboration diagram
3.2. Statechart diagram
33. Acuvity diagram
4. Implementation diagram:
4.1. Component diagram
4.2. Deployment diagram

The choice of what models and diagrams one creates has a great influence on
how a problem is encountered and how a corresponding solution is shaped. We
will study applications of different diagrams throughout the book. However, in this
chapter we concentrate on the UML notations and its semantics.

94 PaRT TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

5.6 UML CLASS DIAGRAM

The UML elass diagram, also referred 1o as object modeling, is the main static
analysis diagram. These diagrams show the static structure of the model. A class
diagram is a collection of static modeling elements, such as classes and their rela-
tionships, connected as a graph to each other and to their contents; for example,
the things that exist (such as classes), their internal structures, and their relation-
ships to other classes. Class diagrams do not show temporal information, which is
required in dynamic modeling, B B

Object modeling is the process by which the logical objects in the real world
(problem space) are represented (mapped) by the actual objects in the program
{logical or a mini world). This visual representation of the objects, their relation-
ships, and their structures is for ease of understanding. To effectively develop a
model of the real world and to determine the objects required in the system, you
first must ask what objects are needed to model the system, Answering the fol-
lowing questions will help you to stay focused on the problem at hand and deter-
mine what is inside the problem domain and what is cutside it:

= What are the goals of the system?
* What must the system accomplish?

You need to know what objects will form the system because, in the object-
oriented viewpoint, objects are the primary abstraction. The main task of object
modeling is to graphically show what each object will do in the problem domain,
descrbe the structure (such as class hierarchy or part-whole) and the relationships
among objects (such as associations) by visual notation, and determine what be-
haviors fall within and outside the problem domain,

5.6.1 Class Notation: Static Structure

A class is drawn as @ rectangle with three components separated by horizontal
lines. The top name compartment holds the ¢lags name, other general properties of
the class, such as atributes, are in the middle compartment, and the bottom com-
nartment holds a list of operations (see Figure 5-1),

Either or both the attribute and operation compariments may be suppressed. A
separator line is not drawn for @ missing compartment if a compartment is sup-
pressed; no inference can be drawn aboul the presence or absence of elements in
it, The class name and other properties should be displayed in up to three sections,
A stylistic convention of UML is to use an italic font for abstract classes and a
normal (roman) font for concrete classes,

5.6.2 Object Diagram

A static object diagram is an instance of a class diagram. It shows a snapshot of
the detailed state of the system at a point in time. Notation is the same for an ob-
ject diagram and a class diagram. Class diagrams can contain objects, so a class
diagram with objects and no classes is an object diagram,

CHARTER 5: UNIFIED MODELING LANGUAGE 95

Bosing 737 Boging 737
length: mecter
fuel capacity; Gal
i doars: i
Boeing 737
length: meter
fel capacity: Gil :
23 hft)
doors: int brsak)

FIGURE 5-1
In class notation, either or both the attributes and operation companments may be supprassed,

5.6.3 Class Interface Motation

Class interface notation is used to describe the externally visible behavior of a
class; for example, an operation with public visibility. Identifying class interfaces
is a design activity of object-oriented system development. The UML notation for
an interface is.a small circle with the name of the interface connected to the class.
A class that requires the operations in the interface may be attached to the circle
by a dashed arrow. The dependent class is not required to actually use all of the
operations. For example, a Person object may need to interact with the BankAc-
count object to get the Balance; this relationship is depicted in Figure 5-2 with
UML class interface notation.

5.6.4 Binary Association Notation

A binary association is drawn as a solid path connecting two classes, or both ends
may be connected to the same class. An association may have an association name.
Furthermore, the association name may have an optional black triangle in it, the
point of the triangle indicating the direction in which to read the name. The end
of an association, where it connects to a class, is called the association role (see
Figure 5~3).

5.6.5 Association Role

A simple association—the technical term for it is binary association—is drawn as
a solid line connecting two class symbols, The end of an association, where it con-
nects 1o a class, shows the association role. The role is part of the association, not

FIGURE 5-2
interface notation of & class.

Pepanl, | eaiaisao o | BankAccoom

86 raET TWO METHODOLDGY, MODELING, AND UNIFIED MODELING LANGUAGE

o worksFor
Compal Person
o employer employes

Pearson

A marrtedTe

FIGURE 5-3
Agsociation notation.

part of the class. Each association has two or more roles to which it is connected.
In Figure 5-3, the association worksFor connects two roles, employee and em-
ployer. A Person is an employee of a Company and a Company is an employer of
-a Person.

The UML uses the term association navigaiion or navigability to specify a role
affiliated with each end of an association relationship. An arrow may be attached
to the end of the path to indicate that navigation is supported in the direction of
the class pointed to. An arrow may be attached to neither, one, or both ends of the
path. In particular, arrows could be shown whenever navigation is supported in a
given direction. In the UML, association is represented by an open arrow, as rep-
resented in Figure 5-4. Navigability is visually distinguished from inheritance,
which is denoted by an unfilled arrowhead symbol near the superclass.

In Figure 5-4, the association is navigable in only one direction, from the
BankAccount to Person, but net the reverse. This might indicate a design decision,
but it also might indicate an analysis decision, that the Person class is frozen and
cannot be extended 1o know about the BankAccount class, but the BankAccount
class can know about the Person class,

5.6.6 Qualifier

A qualifier is an association atiribute. For example, a person object may be asso-
ciated to a Bank object. An attribufe of this association is the account#. The ac-
count# is the qualifier of this association (see Figure 5-5).

FIGURE 5-4
Azsociation notation.

BankAccount :’ Person

CHAPTER 5: UNIFIED MODELING LANGUAGE 9T

accountd

0.1

Person

FIGURE 5-5
The figure depicts association qualifier and its multiplicity.

A qualifier is shown as a small rectangle attached to the end of an association
path, between the final path segment and the symbol of the class to which it connects.
The qualifier rectangle is part of the association path, not part of the class. The qual-
ifier rectangle usually is smaller than the attached class rectangle (see Figure 5-5),

5.6.7 Multiplicity

Multiplicity specifies the range of allowable associated classes. It is given for roles
within associations, parts within compositions, repetitions, and other purposes. A
multiplicity specification is shown as a text string comprising a period-separated
sequence of integer intervals, where an interval represents a range of integers in
this formal (see Figure 5-5);

lower bound .. upper bound.

The terms lower bound and upper bound are integer valoes, specifying the range
of integers including the lower bound to the upper bound. The star character (*) may
be used for the upper bound, denoting an unlimited upper bound. If a single integer
value is specified, then the integer range contains the single values. For example,

0.1 .

0.*

L3 1015, 19.%

5.6.8 OR Association

An OR association indicates a situation in which only one of several potential as-
sociations may be instantiated at one time for any single object. This is shown as

a dashed line connecting two or more associations, all of which must have a class

in common, with the constraint string {or) labeling the dashed line (see Figure 5-

6). In other words, any instance of the class may participate in. al mosk. one of the
associations at one time.
5.6.9 Association Class

An association class is an association that also has class properties. An associa-
tion class is shown as a class symbol attached by a dashed line 1o an association

98 pPART TWO; METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

Company

FIGURE 5-8
An QR association nolation. A car may associate with a persan or a comparmy.

path, The name in the class symbol and the name string attached to the associa-
tion path are the same (see Figure 5-7). The name can be shown on the path or
the class symbuol or both. If an association class has attributes but no operations or
other associations, then the name may be displayed on the association path and
omitted from the association class to emphasize its “association nature.” If it has
operations and attributes, then the name may be omitted from the path and placed
in the class rectangle to emphasize its “class nature.”

5.6.10 MN-Ary Association

An n-ary association is an association among more than twe classes. Since n-ary
association is more difficult to understand, it is belter to convert-an n-ary associa-
tion to binary association. However, here, for the sake of completeness, we cover
the notation of n-ary association. An n-ary association is shown as a large diamond
with a path from the diamond to each participant class. The name of the associa-
tion (if any) is shown near the diamond. The role attachment may appear on each
path as with a binary association. Multiplicity may be indicated; however, quali-
fiers and aggregation are not permitted. An association class symbol may be at-

FIGURE 5-7
Association class.

Company Person
employer

CHAPTER 5: UNIFIED MODELING LANGUAGE 99

Year

Claze e —_—t P o Studeni

labs

FIGURE 5-8 2
An n-ary (lernary) association that shows assoclation among class, year, and student classes.
The association class GradeBiook which contains the attributes of the associations such as
grade, exam, and |ah.

-

tached to the diamond by a dashed line, indicating an n-ary association that has
attributes, operation, or associations. The example depicied in Figure 5-8 shows
the grade book of a class in each semester.

5.6.11 Aggregation and Composition [a-part-of)

Aggregation is a form of association. A hollow diamond is attached to the end of
the path to indicate aggregation. However, the diamond may not be attached 1o
both ends of a line, and it need not be presented at all (see Figure 5-9).

Composition, also known as the a-part-of, is a form of ageregation with strong
ownership to represent the component of a complex object. Composition also is
referred to as a part-whele relationship. The UML notation for composition is
solid diamond at the end of a path. Alternatively, the UML provides a graphically
nested form that, in many cases, is more convenient for showing composition (see
Figure 5-10).

Parts with multiplicity greater than one may be created after the aggregate it-
self but, ance created, they live and die with it. Such parts can also be explicitly
removed before the death of the aggregate.

5.6.12 Generalization

Generalization is the relationship between a more general class and a more specific
class, Generalization is displayed as a directed line with a closed, hollow arrowhead

FIGURE 5-9
Association path.
1 cansintCf
Team <>clns:s = Flayer

100 pPaAT TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

Graphical composition

Car

Whesl

Light 4,10 |

Dioor

2

Engine

1

FIGURE 5-10

Car
3 1 Wheel
4,10 Light Nested compasition
25 b
i I
Elﬂt

Difterant ways to show composition.

at the superclass end (see Figure 5-11). The UML allows a discriminator label to
be attached to a generalization of the superclass. For example, the class Boeing-
Airplane has instances of the classes Boeing 737, Boeing 747, Boeing 757, and
Boeing 767, which are subclasses of the class BoeingAirplane, Ellipses (,..) indi-
cate that the generalization is incomplete and more subclasses exist that are not
shown (see Figure 5—12). The constructor complete indicates that the generaliza-
tion is complete and no more subclasses are needed.

If a text label is placed on the hollow triangle shared by several generalization
paths to subclasses, the label applies to all of the paths. In other words, all sub-
claszes share the given properties.

FIGURE 5-11

Generalization notation.

Vehicle Separale toget style
Bus Truck Car
BoelngAirplane Shared target style
iy
| I
Boeing 737 Boeing 757 Boeing T67

CHAPTER 5 UNIFIED MODELING LanGUAGE 101

Vehicle

BoeingAirplune [~

[incarmplete subcin:sulﬁr

Beeing 737 Boging 757 Boeing 767

FIGURE 5-12
Ellipses (. . .} indicate that additional ciasses exist and are nol shown,

5.7 USE-CASE DIAGRAM

The use-case concept was introduced by Ivar Jacobson in the object-oriented sofi-
ware engineering (OOSE) method [S]. The functionality of a system is described
in a number of different use cases. each of which represents a specific flow of
events in the system.

A use case corresponds to a sequence of transactions, in which each transaction
15 invoked from outside the system (actors) and engages internal objects to inter-
act with one another and with the system’s surroundings.

The description of a use case defines what happens in the system when the use
case is performed. In essence, the use-case model defines the outside (actors) and
inside (use case) of the system’s behavior. Use cases represent specific flows of
events in the system. The use cases are initiated by actors and describe the flow of
events that these actors set off. An actor is anything that interacts with a use case:
It could be a human user, external hardware, or another system. An actor repre-
sents a category of user rather than a physical user. Several physical users can play
the same role, For example, in terms of a Member actor, many people can be mem-
bers of a library, which can be represented by one actor called Member.

A use-case diagram is a graph of actors, a sel of use cases enclosed by a sys-
tem boundary, communication (participation) associations between the actors and
the use cases, and generalization among the use cases.

102 puET TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

. ~

Operulo
- Dy reseanch
Supgort
representative

FIGURE 5-12
A use-case diagram shows the relationship among actors and use cases within a syatam.

Figure 5-13 diagrams use cases for a Help Desk. A use-case diagram shows the
relationship among the actors and use cases within a system. A client makes a call
that is taken by an operator, who determines the nature of the problem. Some calls
can be answered immediately; other calls require research and a return call.

A use case is shown as an ellipse containing the name of the use case. The
name of the use case can be placed below or inside the ellipse. Actors’ names and
use case names should follow the capitalization and punctuation guidelines of the
model.

An actor is shown as a class rectangle with the label <<actor>>, or the label
and a stick figure, or just the stick figure with the name of the actor below the fig-
ure (see Figure 5~14),

FIGURE 5-14
The three representations of an actor ars equivalent.

=4 grlor »> <o BCHOT 20
Customer Cusiomer

Customer

CHAPTER 5 UNIFIED MODELING Lancusce 103

These relationships are shown in a use-case diagram:

1. Communication. The communication relationship of an actor in a use case is
shown by connecting the actor symbol to the use-case symbol with a solid path.
The actor is said to “communicate” with the use case,

2. Uses. A uses relationship between use cases is shown by a generalization arrow
from the use case.

3, Extends: The extends relationship is used when you have one use case that is
similar to another use case but does a bit more. In essence, it is like a subclass,

5.8 UML DYNAMIC MODELING (BEHAVIOR DIAGRAMS)

It is impossible to capture all details of a complex system in just one model or
view. Kleyan and Gingrich explain:

One must understand both the structure and the funetion of the objects involved. One
must understand the taxonemic structure of class objects, the inheritance and mecha-
nisms used, the individual behaviors of objects, and the dynamic behavior of the sys-
tem a5 a whole. The problem is somewhat analogous 1o that of viewing a sports event
such as tennis or a football game. Many different camera angles are required to provide
an understanding of the action taking place. Each camera reveals particular aspects of
the action that could not be conveyed by one camers alone. [6]

The diagrams we have looked at so far largely are static. However, events hap-
pen dynamically in all systems: Objects are created and destroyed, objects send
messages to one another in an orderly fashion, and in some systems, external
events trigger operations on certain objects. Furthermore, objects have states. The
state of an object would be difficult to capture in a static model.

The state of an object is the result of its behavior, Booch provides us an excellent exam-
ple: “When a telephone 15 first installed, it is in idle state, meaning that no previous be-
havior is of great interest and that the phong is ready to initiste and receive calls, When
someone picks up the handset, we say that the phone is now off-hook and in the dialing
state; in this state, we do not expect the phone (o ring: we expect to be able to initiate a
conversation with a party or parties on another telephone. When the phone is on-hook, if
it nngs and then we pick up the handset. the phone is now in the receiving state, and we
expect to be able to converse with the party that initiated the conversation [1]

Booch explains that describing a systematic event in a static medium such as
on a sheet of paper is difficult, but the problem confronts almost every discipline.
In object-oriented development, you can express the dynamic semantics of a prob-
lem with the following diagrams:

Behavior diagrams (dynamic);
* Interaction diagrams:
* Sequence diagrams
* Collaboration diagrams
= Statechart diagrams
= Activity diagrams

104 panrT TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

Each class may have an associatéd activity diagram that indicates the behavior
of the class's instance (its object). In conjunction with the use-case model, we may
provide a scripts or an interaction diagram to show the time or event ordering of
messages as they are evaluated [1].

5.8.1 UML Interaction Diagrams

Interaction diagrams are diagrams that describe how groups of objects collaborate

to get the job done, Interaction diagrams capture the behavior of a single use case,

showing the pattern of interaction among objects. The diagram shows a number of

example objects and the messages passed between those objects within the use

case [3], There are two kinds of interaction models: sequence diagrams and col-
_laboration diagrams.

5.8.1.1 UML Sequence Diagram Sequence d'ingmms are an easy and intultive
way of describing the behavior of a system by viewing the interaction between the
system and its environment, A sequence diagram shows an interaction arranged in
a time sequence. It shows the objects participating in the interaction by their life-
lines and the messages they exchange, arranged in a ime Sequence.

A sequence diagram has two dimensions: the vertical dimension represents
time, the horizontal dimension represents different objects. The vertical line is
called the object’s lifeline, The lifeline represents the ohject’s existence during the
interaction, This form was first popularized by Jacobson. An object is shown as a
box at the top of a dashed vertical line (see Figure 5-15). A role is a slot for an
object within a collaboration that describes the type of object that may play the
role and its relationships to other roles. However, a sequence diagram does not
show the relationships among the roles or the association among | the objects. An
object role is shown as a vertical dashed line, the lifeline,

FIGURE 5-15

An example of a sequance diagram,

Telephons Call

Caller Exehange Recelver Talk
| I] T
| OffHook | | |
| § | |
Dl Ty
:.‘ ol ome i‘ | l
| i

} CralMumber ..: { 1|
|} : RingTone .1 ;
1 i | CifHook
I | | .‘I
i | | |
I ! I OnHook |
I I T !

CHAPTER 5: UNIFIED MODELING LaNGuace 105

Each message is represented by an arrow between the lifelines of two objects.
The order in which these messages oceur is shown {op to bottom on the page. Each
message is labeled with the message name. The label also can include the argu-
ment and some control information and show self-delegation, a message that an
object sends to itself, by sending the message arrow back to the same lifeline. The
horizontal ordering of the lifelines is arbitrary. Often, call arrows are arranged to
procesd in one direction across the page, but this is not always possible and the
order conveys no information,

The sequence diagram is very simple and has immediate visual appeal—this is
its great strength. A sequence diagram 15 an alternative way to understand the over-
all flow of the control of a program. Instead of looking at the code and trying to
find out the overall sequence of behavior, you can use the sequence diagram 1o
quickly understand that sequence [3].

5.8.1.2 UML Collaboration Diagram Another type of interaction diagram is the
collaboration diagram. A collaboration diagram represents a collaboration, which
i5 a set of objects related in a particular context, and interaction, which i3 a set of
messages exchanged among the objects within the collaboration 1o achieve a de-
sired outcome. In a collaboration diagram, objects are shown as figures. As in a
sequence diagram, arrows indicate the message sent within the given use case. In
a collaboration diagram, the sequence is indicated by numbenng the messages.
Some people argue that numbering the messages makes it more difficult to see the
séquence than drawing the lines on the page. However, since the collaboration di-
agram 18 more compressed, other things can be shown more easily—for example,
how the objects are linked together—and the layout can be overlaid with packages
or other information.

A collaboration disgram provides several numbering schemes, The simplest is
illustrated in Figure 5-16. You can also use a decimal numbering scheme (see Fig-

FIGURE 5-16
A colfaboration diagram with simple rumbearing.

Telephone Call

Object Caller : Messuge

I OffHook 2 DHalTone 3: DinlMNumber

h 4
Exchange ﬂ
4; RanigTone
h J
Receiver

51 OffHook
Y

& OnHook
Talk

106 pFuRT TWO: METHODOLOGY, MODELING, AND UNIFIED MGDELING LANGUAGE

Telephone Call
Cbject Caller — Message
1.1: OffHook 2.1: DialTone 1.2: DhalNamber
b 4
Exchange
4.2: RingTone
b
Receiver
3.1: OffHook
v
4.1: OnHook
Talk
FIGURE 5-17

A collaboration disgram with decimal numbering.

ure 5-17), where 1.2; DialNumber means that the Caller (1) is calling the Ex-
change (2); hence, the number 1.2. The UML uses the decimal scheme because it
miakes il clear which operation 1s calling which other operation, although it can be
hard to seée the overall sequence [3].

Different people have different preferences when it comes to deciding whether
to use sequence or collaboration diagrams. Fowler and Scott suggest that a se-
quence diagram is easier to read. Others prefer a collaboration diagram, because
they can use the layout to indicate how objects are statically connected [3]. Fowler
and Scott argue that the main advantage of interaction diagrams (both collabora-
tion and sequence) is simplicity. You easily can see the message by looking at the
diagram. The disadvantage of interaction diagrams is that they are great only for
représenting a single sequential process; they begin to break down when you want
to represent conditional looping behavior. However, conditional behavior can be
represented in sequence or collaboration diagrams through two methods, The pre-
ferred method is to use separate diagrams for each scenario. Another way 1s to use
conditions on messages to indicate the behavior. The main guideline in develop-
ing interaction diagrams is simplicity. The interaction diagram loses its clarity with
more complex conditional behavior. If you want to capture complex behavior in a
single diagram, use an activity diagram, which will be described in a later section,

An interaction diagram basically is used to examine the behavior of objects
within a single use case. It is good at showing collaboration among the objects but
not so good at precise definition of the behavior [3].

5.8.2 UML Statechart Diagram

A statechart diagram (also called a stare diagram) shows the sequence of states
that an object goes through during its life in response to outside stimuli and mes-
_sages. The state is the set of values that describes an object at a specific pomt in
time and is represented by %LH}LDJS and the wransitions are represented by ar-
rows connecting the state symbols. A statechart diagram may contain s_uﬂ:l_iigm_js'.

.-———II,\ +_‘:.r.'n'-;}‘{ ;--_.Ei_mfz' .08 "(
L —— .

£ > senfpnint SN
_J rﬁﬂ T s A e 5. f.-fﬁ M_iﬁ.,l!rﬁ.vﬁ.,
1“‘";} el H BHAPTER 5 UNIFIED MODELING LANGUAGE 107

E—”ﬁ }; 'r-\'

A state diagram represents the state of the method execution (thal is, the state
of the object executing the method), and the activities in the diagram represent the
activities of the object that performs the method. The purpose of the state diagram
is to understand the algorithm involved in performing a method, To complete an
object-oriented design, the activities within the diagram must be must be assigned to ob-
Jects and the control flows assigned to links in the object diagram.

" A statechart diagram is similar to a Petri net diagram, where a token (shown by
a solid black dot) represents an activity symbol. When an activity symbol appears
within a state symbol, it indicates the execution of an operation, Executing a par-
. ticular step within the diagram represents a state within the execution of the over-
all method. The same operation name may appear more than once in a state dia-
gram, indicating the invocation of the same operdtion in a different phase, An
outgoing solid arrow attached to a statechart symbol indicates a transition triggered
b'y_fr:‘-:smrmume activity. The name of this implicit event need not be writ-
ten, but conditions that depend on the result of the activity or other values may be
included. An event occurs at the instant in time when the value is changed. A mes-
sage i3 data passed from one object to another. At a minimum, a message 1§ 4 name
that will irigger an operation associated with the target object; for example, an Em-
ployee object that contains the name G an employee. If the Employee object re-
ceived a message (geiEmploveeName) asking for the name of the employee, an op-
eration contained in the Employee class (e.g., returnEmployeeName) would be
invoked. That operation would check the attribute Employee and then assign the
value associated with that atiribute back to the object that sent the message in the
first place. In this case, the state of the Employee object would not have been
changed. Now, consider a situation where the same Emplayee object received a

message (updateEmploveeAddress) that contained a parameter (2000 21st Street,
Seattle, WA):

updateEmployeeAddress (2000 21st Street, Seattle, WA)

In this case the object would invoke an operation from its class that would
modify the value associated with the attribute Employee; changing it from the old
address to the new address; therefore, the : state of the employee objeci has been
changed..

A state is represented as a rounded box, which may contain one or more com-
partments. The compartments are all optional. The name compartment and the
internal transition compartment are two such compartments:

* The name compartment holds the optional name of the state. States without
names are “anonymous” and all are distinct. Do not show the same named state
mm& in the same dzagrnm. since it will be very confus:ng

perfnrmed in response to events received while the object 15 in the state, with-
out changing states.

The syntax used is this: event-name argument-list / action-expression; for ex-
ample, help / display help.

108 rarT TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

.*'l‘".“l

L hi

| ki U X
f\l / r-*h‘ g

pts

)

Two special events are entry and exit, which are reserved words and cannot be
used for event names, These terms are used in the following ways: entry / action-
expréssion (the action is to be performed on entry to the state) and exit / action-
expressed (the action is to be performed on exit from the state).

The statechart supports nested state machines; to activate a substate machine
use the keyword do: do / machine-name (argument-list). If this state is entered, af-
ter the entry action is completed, the nested (sub)state machine will be executed
with its initial state. When the nested state machine reaches its final state, it will
exit the action of the current state, and the current state will be considered com-
pleted. An initial state is shown as a small dot, and the transition from the inital
state may be labeled with the event that creales the objects; otherwise, it is unla-
beled. If unlabeled, it represents any transition to the enclosing state. A final state
is shown as a circle surrounding a small dot, a bull's-eye. This represents the com-
pletion of activity in the enclosing state and triggers a transition on the enclosing
state labeled by the implicit activity completion event, usually displayed as an un-
labeled transition (see Figure 5-18).

The transition can be simple or complex. A simple transition is a relationship
between two states indicating that an object in the first state will enter the second
state and perform certain actions when a specific event occurs: if the specified con-

FIGURE 5-18
A simple state Idle and a nested state. The dialing state contains substates, which congist of
start and dial states. o

il
- Tdls)
v [—— . Jdse I o
y lift receiver and get dial tone P -t P
'! e '_I:__:I rj Siate /ﬂ" r,'tn" r';"ll)|
y :"_'\ ':"‘G
2 '._;--'
Dialing \5
5‘\‘\?
5 .
; Start (Dial B NN
and st | b numnber.si Validi) 0
;I:!_I:r:nd ﬁlt!;?j;m; m'i Z entry and nomber-appsading

|

: har
J oot o

digit(n}

ﬂ({‘?ﬁ

CHAPTER 5 UNIFIED MODELING LanGusce 109

---------------- =D
.i ~CO—C”

FIGURE 5-19 *
A complex fransition,

ditions are satisfied, the transition is said 1o “fire.” Events are processed one at a
time. An event that triggers no transition is simply ignored.

A complex transition may have multiple s and target states. It represents
a synchronization or a splitting of control into concurrent threads. A complex tran-
sition is enabled when all the source states are changed, after a complex transition
“fires” all its destination states. A complex transition is shown as a short heavy
bar.! The bar may have one or more solid arrows from states to the bar (these are
source states); the bar also may have one or more solid arrows from the bar to
states (these are the destination states). A transition string may be shown near the
bar. Individual arrows do not have their own transition strings (see Figure 5-19).

There certainly is no reason to prepare a state diagram for each class in your
system, Indeed, many developers create rather large systems without bothering to
create any state diagrams. However, state diagrams are useful when you have a
class that is very dynamjc. In that situation, it often is helpful to prepare a state di-
agram 1o be sure you understand each of the possible states an object of the class
could take and what event (message) would trigger each ransition from one state
to another. In effect, state diagrams emphasize the use of events and states to de-
termine the overall activity of the system.

5.8.3 UML Activity Diagram

An activity diagram is a variation or special case of a state machine, in which the
states are activities representing the performance of operations and the transitions
are triggered by the completion of i operations. Unlike state diagrams that focus
on the events occurring o a single object as it responds mm&
diagram can be used to model an entire business s process. The purpose of an activity
didgram is to provide a view of flows and what is going on inside a use case or
among several classes. However, activity diagram can also be used 1o represent a
class’s method implementation as we will see throughout the book.

'A synchronization bar, which can represent synchronization, forking, or bath,

110 PAET TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

Prepare incaming
documents

Dirmw up confraet
morgage-deed

FIGURE 5-20
An activity diagram for processing morigage requests (Loan: Processing Morigags Request).

An activity model is similar to a statechart diagram, where a token (shown by
a black dot) represents an operation. An activity is shown as a round box, con-
taining the name of the operation. When an operation symbol appears within an
activity diagram or other state diagram, it indicates the execution of the operation.
Executing a particular step within the diagram represents a state within the execu-
tion of the overall method. The same operation name may appear more than once
in a state diagram, indicating the invocation of the same operation in different
phases. An outgoing solid arrow attached to an activity symbol indicates a transi-
tion triggered by the completion of the activity. The name of this implicit event
need not be written, but the conditions that depend on the result of the activity or
other values may be included (see Figure 5-20). Several transitions with different
conditions imply a branching off of control. If conditions are not disjoint, then the
branch is nondeterministic. The concurrent control is represented by multiple ar-
rows leaving a synchronization bar, which is represented by a short thick bar with
incoming and outgoing arrows. Joining concurrent control is expressed by multi-
ple arrows entering the synchronization bar. The activity diagram depicted in Fig-
ure 5-20, “Process Mortgage Request,” 15 a multistep operation, all of which are
completed before the single operation Draw up insurance policy.

B

b
A ,\u"" CHAPTER 5 UNIFIED MODELING Lancuace 111

F
@ g
p > F!J— (wa
v [hours < =40]
' Caleulate payroll ;' ’z}‘ Marmal payrall
’..'F'
é.r’
y 7
H}-ﬁ
[hors = 4i0] Oivertime,

et authorization

FIGURE 5-21
A decision.

An activity diagram is used mostly to show the internal state of an object, but
external events may appear in them. An external event appears when the object is
in a “wail state,” a state during which there is no intemal activity by the object
and the object is waiting for some external event to occur as the resull of an ac-
tivity by another object (such as a user input or some other signal). The two states
are wait state and activity state. More than one possible event might take the ob-
ject out of the wait state; the first one that occurs triggers the transition, A wait
state is the “normal” state.

Activity and state diagrams express a decision when conditions (the UML calls
them guard conditions) are used to indicate different possible transitions that de-
pend on Boolean conditions of container object. The figure provided for a deci-
sion is the traditional diamond shape, with one or more incoming arrows and two
or more oulgoing amrows, each labeled by a distinet guard condition, All possible
outcomes should appear on one of the outgoing transitions (see Figure 5-21).

Actions may be organized into swimlanes, each separated from neighboring
swimlanes by vertical solid lines on both sides. Each swimlane represents respon-
sibility for part of the overall activity and may be implemented by one or more
objects. The relative ordering of the swimlanes has no semantic significance but
might indicate some affinity. Each action is assigned to ane swimlane. A transiticn
may cross lanes; there is no significance to the routing of the transition path (see
Figure 5-22),

5.8.4 Implementation Diagrams

Implementation diagrams show the implementation phase of systems develop-
ment, such as the source code structure and the run-time implementation structure.
There are two types of implementation diagrams: Component diagrams show the
structiire of the code itself, and deployment diagrams show the structure of the run-
time system. These are relatively simple, high-level diagrams compared with the
diagrams we have considered so far. Although we look at component-based de-
velopment later in this book, a full discussion of implementation is beyond the
scope of this book. This section is included to show the place of implementation
in the UML.

412 PaRT TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

InsuranceAgent LoanOificer

Chieck data for

Draw up contract
margage-deed

Pay provision to
INSErance agent

Diraw up
insurance policy

FIGURE 5-22
Swimtanas in an activity diagram.

5.8.4.1 Component Diagram Component diagrams mode! the physical compo-
nents (such as source code, executable program, user interface) in a design.
high-level physical components may or may not be equivalent to the many smaller
components you use in the creation of your applmnnun For example, & user in-
terface may contain many other off-the-shelf components purchased to put to-
gether a graphical vser interface.

Another way of looking at components is the concept of packages. A package
is used to show how you can group together classes, which in essence are smaller
scale components. Packages will be covered in the next section, but & point worth
mentioning here is that a package usually will be used to group logical compo-
nents of the application, such as classes, and not necessarily physical components.
However, the pa.cl»:ag& could be a first approximation of what eventually will tum
into physical grouping. In that case, the package will become a component [4].

A compenent diagram is a graph of the design’s components connected by de-
pendency relationships. A component is represented by the boxed figure shown in
Figure 5-23. Dependency is shown as a dashed arrow.

5842 Depluyml:ni Diagram Deployment diagrams show the cﬂlﬂgmg_nf_

run-time processing elements and the software components, processes, and objects
‘that Tive in them. Software component instances represent run-tfimé manifestations

CHAPTER 5: UNIFIED MODELING LancuacE 113

Arcess ﬂ |_|:|:ldnl:=
!
¢

U

FIGURE 5-23
A component diagram.

of code units. In most cases, component diagrams are used in conjunction with de-
ployment diagrams to show how physical modules of code are distributed on var-

ious hardware platforms. In many cases, component and deployment diagrams can
be combined [4].

A deployment diagram is a_graph of nodes connected by communication asso-
ciation. Nodes may contain component instances, which means that the component
lives or runs at that node. Components may contain objects; this indicates that the
object is part of the component. Components are connected to other components
by dashed-arrow dependencies. usuvally through interfaces, which indicate one
component uses the services of another. Each node or processing element in the

FIGURE 5-24
The basic UML notation for & deployment diagram,

53
o B
- 9
T Qe

BTt |

MNode 1: AdminServer

Access —zl.,lpd:t:

i

S

I
4
i
I
T
’!
Modeé 2: John's PC |

4]

-\.-_-L;f'fj Fo

i

A

114 purT TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

system is represented by a three-dimensional box. Connections between the nodes
(or platforms) themselves dré shown by solid lines (see Figure 5-24).

5.9 MODEL MANAGEMENT: PACKAGES AND
MODEL ORGANIZATION

A package is a grouping of model elements. Packages themselves may contain
other packages. A package may contain both subordinate packages and ordinary
model elements. The entire system can be thought of as a single high-level pack-
age with everything else in it. All UML model elements and diagrams can be or-
ganized into packages,

A package is represented as a folder, shown as a large rectangle with a tab
attached to its upper left corner. If contents of the package are not shown, then the
name of the package is placed within the large rectangle. If contents of the pack-
age are shown, then the name of the package may be placed on the tab (see Fig-
ure 5-25), The contents of the package are shown within the large rectangle.

Figure 5-26 shows an example of several packages. This figure shows three
packages (Clients, Bank, and Customer) and three classes (Account class, Savings
class, and Checking class) inside the Business Model package. A real model would
have many more classes in each package. The contents might be shown if they

FIGURE 5-25
A package and its contents.

CiradeMoteBook
Year
mme]\
[ctams N et

siudent

Clies

GradeBook
grade
Inty

CHAPTER 5: UNIFIED MODELING LANGuacE 115

[—
Cusmomer

|

|

l

| Business Model

|

|

{]=—"11 —

phi—oul I L R

—» Clients ¥ Bank
Arcount
Checking Savings

FIGURE 5-26
A package and its dependencies.

are small, or they might be suppressed from higher levels. The entire system 15 a
package.

Figure 5-26 also shows the hierarchical structure, with one package dependent
on other packages. For example, the Customer depends on the package Business
Model, meaning that one or more elements within Customer depend on one or
more elements within the other packages, The package Business Model is shown
partially expanded. In this case, we see that the package Business Model owns the
classes Bank, Checking, and Savings as well as the packages Clients and Bank.
Ownership may be shown by a graphic nesting of the figures or by the expansion
of a package in a separate drawing.

Packages can be used to designate not only logical and physical groupings but
also use-case groups. A use-case group, as the name suggests, is a package of use
cases,

Model dependency represents a situation in which a change to the target ele-
ment may require a change to the source element in the dependency, thus indicat-
ing the relationship between two or more model elements. It relates the model el-
ements themselves and does not require a set of instances for its meaning. A
dependency is shown as a dashed arrow from one model element to another on
which the first element is dependent (see Figure 5-27).

146 T TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

® WorkFor ®
i i .
. | (subset) Ehe
I ManagerOf |
FIGURE 5-27
An example of constraints, A person is a manager of people who wark for the accounting
departmant.

5.10 UML EXTENSIBILITY

In this section, we look at general purpose mechanisms, which may be applied to
any modeling element, and at the extensibility of the UML.

5.10.1 Model Constraints and Comments

Constraints are assumptions or relationships among model elements specifying
conditions and propositions that must be maintained as true; otherwise the system
described by the model would be invalid, Some constraints, such as association
OR constraints, are predefined in the UML; others may be defined by users.
Constraints are shown as text in braces, {) (see Figure 5-27). The UML also
provides language for writing constraints in the OCL. However, the constraint may
be written in a natural language. A constraint may be a “comment,” in which case
it is written in text. For an element whose notation is a text string such as an at-
tribute, the constraint string may follow the element text string. For a list of ele-
ments whose notation is a list of text strings, such as the attributes within class,
the constraint string may appear as an element in the list. The constraint applies 1o

FIGURE 5-28
MNote.
Person |-cmployes comployer - Company
I
I
|
|
|
Statie models
and revision levels

released vesterday

CHAPTER 5: UNIFIED MODELING Lancusce 117

all succeeding elements of the list until reaching another constraint string list ele-
ment or the end of the list. A consiraint attached to an individual list element does
not supérsede the general constraints but may modify individual constraints within
the constraint’s string. For a class or association path, the constraints string may
be placed near the symbol name.

The example depicted in Figure 5-27 shows two classes and two associations.
The constraint is shown as a dashed arrow from one element to the other, labeled
by the constraints string in braces. The direction of the arrow is relevant informa-
tion within the constraint.

5.10.2 Mote

A mote is a graphic symbol containing textual information; it also could contain
embedded images. It is attached to the diagram rather than to a model element. A
note is shown as a rectangle with a “bent comer™ in the upper right comer. It can
contains any length text (see Figure 5-28).

5.10.3 Stersotype

Stereotypes represent a built-in extensibility mechanism of the UML. User-defined
extensions of the UML are enabled through the use of stereotypes and constraints,
Astereotype, in effect, is a new class of modeling element introduced during mod-
eling. It represents a subclass of an existing modeling element with the same form
(atributes and relationships) but a different intent. UML stereotypes extend and
tailor the UML for a specific domain or process.

The general presentation of a stereotype is to use a figure for the base element
but place a keyword string above the name of the element (if used, the keyword
string is the name of a stereotype within matched guillemets, “<<", “=>", such
as <<flow>>. Note that a guillemet looks like a double angle-bracket, but it is
a single character in most fonts. The stereotype allows extension of UML notation
as well as a graphic figure, texture, and color. The figure can be used in one of
two ways: (1) instead of or in addition to the stereotype keyword string as part of
the symbol for the base model element or (2) as the entire base model element (see
Figure 5-29), Other information contained by the base model element symbol is
suppressed.,

The main shortcoming of extensive use of sterectypes is that it makes the
miodel less universal and not easily interchangeable with other tools or software
Systems.

5.11 UML META-MODEL

The UML defines notations as well as a meta-model. UML graphic notations can
be used not only to describe the system’s components but also to describe a model
itself. This is known as a meta-medel. In other words, a meta-model is a model of
modeling elements, The purpose of the UML meta-model is to provide a single,

118 paAT TWO: METHODOLOGY, MODELING, AND UNIFIED MODELING LANGUAGE

<< Flow >> < Flow e
Copy Copy
MumberCiCopy MumberCiCopy
makeCopy minkzCopy

Copy .—bl::
MumbertiCopy Copy MI::

mikeCopy

FIGURE 5-29
Various forms of stareotype notatian.

common, and definitive statement of the syntax and semantics of the elements of
the UML.

The meta-model provides us a means to connect different UML diagrams, The
connection between the different diagrams is very important, and the UML at-
tempts to make these couplings more explicit through defining the underlying
model (meta-model) while imposing no methodology.

The presence of this meta-model has made it possible for its developers (o agree
on semantics and how those semantics would be best rendered. This is an impor-
tant step forward, since it can assure consistency among diagrams. The meta-
model also (in the future) can serve as a4 means to exchange data between differ-
ent CASE tools. Additionally, the meta-model has made it possible for a team to
explare ways to make the modeling language much simpler by, in a sense, unify-
ing the elements of the unified modeling language. Figure 5-30 is an example of
the UML meta-model that describes relationship with association and generaliza-
tion; similarly association is depicted as a composition of association roles. Here
we have used UML modeling elements (such as generalization and composition)
to describe the model itself; hence, the lerm meta-model.

Most users of methods do not need such a deep understanding to get some value
out of UML notation. However, it does help define what constitutes a well-formed
model, that is. one that is syntactically correct.

CHAPTER 5! UNIFIED MODELING Lancusase 119

Relanonship

Greneralization Association

Associntion Robe

FIGURE 5-30

The UML meta-model describing the relationship betwesn association and generalization.
Associalion |z depicted as a composition of association roles. Here, we use UML modaling ele-
ments (such as generalization and composition) to describe the modal itself, hence, the term
mela-model.

5.12 SUMMARY

A model 15 a simplified representation of reality, simplified because reality is too
complex or large and much of the complexity actually is irrelevant to the problem
being described or solved.

The unified modeling language was developed by Booch, Jacobson, and Rum-
baugh. The UML encompasses the unification of their modeling notations.

The UML class diagram is the main static structure analysis diagram for the
system. It represents the class structure of a system with relationships between
classes and inheritance structure. The class diagram is developed through use-case,
sequence, and collaboration diagrams.

The use-case diagram captures information on how the systém or business
waorks or how you wish it to work. It is a scenario-building approach in which you
model the processes of the system. It is an excellent way to lead into object-ori-
ented analysis of the system.

In the UML sequence diagram is for dynamic modeling, where objects are rep-
resented by vertical lines and messages passed back and forth between the objects
are modeled by horizontal vectors between the objects.

The UML collaboration diagram is an alternative view of the sequence diagram,
showing in a scenario how objects interrelate with one another,

Statechart diagrams, another form of dynamic modeling, focus on the events
occurring within a single object as it responds to messages; an activity diagram is
used to model an entire business process. Thus, an activity model can represent
several different classes.

Implementation diagrams show the implementation phase of systems develop-
ment, such as the source code and run-time implementation structures. The two

120 PART TWO: METHODOLOGY, MODELING, AND UNMIFIED MODELING LANGUAGE

types of implementation diagrams are component diagrams, which show the struc-
ture of the code itself, and deployment diagrams, which show the structure of the
run-time system.

Stereotvpes represent a built-in extensibility mechanism of the UML. User-
defined extensions of the UML are enabled through the use of stereotypes and
constraints,

UML graphical notations can beé used not only to describe the system’s com-
ponents but also to describe a model itself, this is known as a mera-model. It is a
model of modeling elements. The purpose of the UML meta-model is o provide
a single, common, and definitive statement of the syntax and semantics of the
elements of the UML.

KEY TERMS

Activity diagram (p. 109)
Association class (p. 97)
Class diagram (p. 94)
Collaboration diagram (p. 105)
Component diagram (p. 112}
Deployment diagram (p. 112}
Dynamic model (p. 91)
Generalization (p. 99)
Implementation diagram (p. 111}
Interaction diagram (p. 104)
Lifeline (p. 104)
Meta-model (p. 117)

Model dependency (p. 115)
Model (p. 89)

Multiplicity (p. 97}

N-ary association (p. 98)
Note (p. 117)

OR association (p. 97)
Package (p. 114)

Qualifier (p. 96)

Sequence diagram (p. 104)
Statechart diagram (p. 106)
Static model (p. 90)
Stereotype (p. 117)
Swimlane (p. 111)

Use-case diagram (p. 101)

REVIEW QUESTIONS

1. What iz a model?
2. Why do we need w model a problem?

PART 111

OBJECT-ORIENTED
ANALYSIS: USE-CASE
DRIVEN

A.na]ysis is the process of extracting the needs of a system and what the
system must do to satisfy the users' requirements. The goal of object-
oriented analysis is to understand the domain of the problem and the sys-
tem’s responsibilities by understanding how the users use or will use the
system. This part consists of Chapters 6, 7, and 8.

123

CHAPTER & L

Object-Oriented Analysis
Process: Identifying
Use Cases

.« « fust think of all the Christmas pres-
ents that are never remeoved from their
boxes before being returned.

—Gause and Weinberg [6]

Chapter Objectives

You should be able w define and understand
* The object-uriented analysis process.

* The use-case modeling and analysis;

» Identifying actors.

+ [dentifying use cases.

* Developing effective documentation,

6.1 INTRODUCTION

The first step in finding an appropriate solution to & given problem is to under-
stand the problem and its domain, The main objective of the analysis is to capture
a complete, unambiguous, and consistent picture of the requirements of the sys-
tem and what the system must do to satisfy the users’ requirements and needs, This
is accomplished by constructing several models of the system that concentrate an
describing what the system does rather than how it does it. Separating the behav-
ior of a sysiem from the way that behavior is implemented requires viewing the
system from the perspective of the user rather than that of the machine.

Analysis is the process of transforming a problem definition from a fuzzy set
of facts and myths into a coherent statement of a system’s requirements. In Chap-
ter 3, we looked at the software development process as three basic transforma-
tions. The objective of this chapter is to describe Transformation 1, which is the
transformation of the users’ needs into a set of problem statements and require-
ments (also known as requirement determination). In this phase of the software

125

126 FraT THREE: ORIECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

process, you must analyze how the users will use the system and what is needed
to accomplish the system's operational requirements. Analysis involves a great
deal of interaction with the people who will be affected by the system, including
the actual users and anyone else on whom its creation will have an impact. The
analyst has four major tools at his or her disposal for extracting information about
a gystem:

1. Examination of existing system documentation
2. Interviews

3. Questionnaire

4. Observation

In addition, there are minor methods, such as literature review. However, these ac-
tivities must be directed by a use-case model that can capture the user require-
ments. The inputs to this phase are the users’ requirements, both written and oral,
which will be reduced to the model of the required operational capability of the
system,

An object-oriented environment allows the same set of models to be used for
analysis, design, and implementation. The analyst is concerned with the uses of
the system, identifying the objects and inheritance, and thinks about the events that
change the state of objects. The designer adds detail to this model, perhaps de-
signing screens, user interaction, and database access. The thought process flows
s0 naturally from analyst to designer that it may be difficult to tell where analysis
ends and design begins [8].

6.2 WHY ANALYSIS IS A DIFFICULT ACTIVITY

Analysis is a creative activity that involves understanding the problem, its associ-
ated constraints, and methods of overcoming those constrainis: This is an iterative
process that goes on until the problem is well understood [11].

Norman [9] explains the three most comman sources of requirement difficulties:

1. Fuzzy descriptions
2. Incomplete requirements
3. Unnecessary features

A common problem that leads to requirement ambiguity is a fuzzy and am-
biguous description, such as “fast response time"” or “very easy and very secure
updating mechanisms.” A requirement such as fast response time is open to inter-
pretation, which might lead to user dissatisfaction if the user’s interpretation of a
fast response 1s different from the systems analyst's interpretation [9].

Incomplete requirements mean that certain requirements necessary for success-
ful system development are not included for a variety of reasons. These reasons
could include the users' forgetting to identify them, high cost, politics within the
business, or oversight by the system developer, However, because of the iterative
nature of object-oriented analysis and the unified approach (see Chapter 4), most
of the incomplete requirements can be identified in subsequent tries.

CHAPTER 6: OBJECT-ORIENTED ANALYSIS PROCESS: IDENTIFYING USE cases 127

When addressing features of the system, keep in mind that every additional fea-
ture could affect the performance, complexity, stability, maintenance, and support
costs of an application, Features implemented by a small extension to the applica-
tion code do not necessarily have a proportionally small effect on a user interface.
For example, if the primary task is selecting a single object, extending it 1o sup-
port selection of multiple objects could make the frequent, simple task more dif-
ficult to carry out. A number of other factors also may affect the design of an ap-
plication. For example, deadlines may require delivering a product to market with a
minimal design process, or comparative evaluations may force considering additional
features. Remember that additional features and shortcuts can affect the product.
There is no simple equation to determine when a design trade-off is appropriate.

Analysis is a difficult activity. You must understand the problem in some appli-
cation domain and then define a solution that can be implemented with software.
Experience often is the best teacher. If the first try reflects the errors of an in-
complete understanding of the problems, refine the application and try another run.

6.3 BUSINESS OBJECT ANALYSIS: UNDERSTANDING THE
BUSINESS LAYER

Business object analysis is a process of understanding the system’s requirements
and establishing the goals of an application. The main intent of this activity is to
understand users’ requiremnents. The outcome of the business object analysis is to
identify classes that make up the business layer and the relationships that play a
role in achieving system goals.

To understand the users’ requirements, we need to find out how they “use” the
system. This can be accomplish by developing use cases. Use cases are scenarios
for understanding system requirements.

In addition to developing use cases, which will be described in the next section,
the uses and the objectives of the application must be discussed with those who
are going to use it or be affected by the system. Usually, domain users or experts
are the best authorities, Try to understand the expected inputs and desired re-
sponses. Defer unimportant details until later. State what must be done, not how it
should be done. This, of course, is easier said than done. Yet another tool that can
be very useful for understanding users’ requirements is preparing a prototype of
the user interface. Preparation of a prototype usually can help you better under-
stand how the system will be used, and therefore it is a valuable tool during busi-
ness object analysis. (We defer the discussion of prototyping a user interface to
Chapter 12.)

Having established what users want by developing use cases then documenting
and modeling the application, we can procead to the design and implementation.
The unified approach (UA) steps can overlap each other. The process is iterative,
and you may have to backtrack to previously completed steps for another try. Sep-
arating the whar from the how is no simple process. Fully understanding a prob-
lem and defining how to impiement it may require several tries or iterations, In
this chapter, we see how a use-case model can assist us in capturing an applica-
lion’s requirements.

128 PuRT THREE: OBJECT-ORIENTED AMALYSIS: USE-CASE DRIVEN

6.4 USE-CASE DRIVEN OBJECT-ORIENTED ANALYSIS:
THE UNIFIED APPROACH

The object-oriented analysis (OOA) phase of the unified approach uses actors and
use cases to describe the system from the users’ perspective. The actors are exter-
nal factors that interact with the system; use cases are scenarios that describe how
actors use the system. The use cases identified here will be involved throughout
the development process.

The OOA process consists of the following steps (see Figure 6-1):

1. Identify the actors:
* ‘Who is using the system?
= Or, in the case of a new system, who will be using the system?
2. Develop a simple business process model using UML activity diagram.
3. Develop the use case: _
» What are the users doing with the system?
« Or, in case of the new system, what will users be doing with the system?
« Use cases provide us with comprehensive documentation of the system un-
der study.
4. Prepare interaction diagrams:
+ Determine the sequence.
» Develop collaboration diagrams,
5. Classification—develop a static UML class diagram:
= Identify classes,
* Identify relationships.
= [dentify attributes,
* Identify methods.
6. lterate and refine: If needed, repeat the preceding steps.

This chapter focuses on steps | to 3.

FIGURE &-1 _
The abject-arientad analysis process in the Unified Approach (UA).

Develop use 3
i cases, activity Develop ::f;::gi:m Refine
$AR [pidingrans [ieracien (4P acributs, and —pand
maihods
Tdentify aoior I S

!

CHAPTER & OBJECT-ORIENTED ANALYSIS PROCESS: IDENTIFYING USE cases 129

6.5 BUSINESS PROCESS MODELING

This is not necessarily the stant of every project, but when required, business
processes and user requirements may be modeled and recorded to any level of de-
tail. This may include modeling as-is processes and the applications that support
them and any number of phased, would-be models of reengineered processes or
implementation of the system. These activities would be enhanced and supported
by using an activity diagram. Business process modeling can be very time con-
suming, so the main idea should be to get a basic model without spending too
much time on the process, The advantage of developing a business process model
is that it makes you more familiar with the system and therefore the user require-
ments and also aids in developing use cases. For example, let us define the steps
or activities involved in using your school library. These activities can be repre-
sented with an activity diagram (see Figure 6-2).

Developing an activity diagram of the business process can give us a better un-
derstanding of what sort of activities are performed in a library by a library member.

6.6 USE-CASE MODEL

Use cases are scenarios for understanding system requirements. A use-case model
can be instrumental in project development, planning, and documentation of systems

FIGURE 6-2
This activity diagram (AD} shows some activities that can be performed by a library member,

Member
COAMES in

130 FuRT THREE: OBJECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

requirements. A use case is an interaction between users and a system: it captures
the goal of the users and the responsibility of the system to its users. For exam-
ple, take a car; typical uses of a car include “take you different places” or “haul
your stuff” or a user may want to use it “off the road” The use-case model de-
seribes the uses of the system and shows the courses of events that can be per-
formed. In other words, it shows a system in terms of its users and how it is be-
ing used from a user point of view. Furthermore, it defines what happens in the
system when the use case is performed, In essence, the use-case model tries to sys-
tematically identify uses of the system and therefore the system’s responsibilities.
A use-case model also can discover classes and the relationships among subsys-
tems of the systems.

A use-case model can be developed by talking to typical users and discussing
the various things they might want to do with the application being prepared. Each
use or scenario represents what the user wants to do. Each use case must have a
name and short textual description, no more than a few paragraphs [5] (see Chapter 4).

Since the use-case model provides an external view of a system or application,
it is directed primarily toward the users or the “actors” of the systems, not its im-
plementers (see Figure 6-3), The use-case model expresses whar the business or
application will do and not how; that is the responsibility of the UML class dia-

FIGURE 6-3

Soma uses of @ library. As you can see, these are uses of extarnal views of the libmary system
by an acter such as a member, circulation clark, or supplier instead of & developer of the library
syatem. The simpler the use-case modal, the more effective it will be, I s not wise to capture
all the detalis right at the start; you can do that later.

Library

Borrow books

Return books >

Circulation Clerk
% Interlibrary loan
Member

Read hooks,
newspaEper

ol

Purchase supplies

O

Supplier

CHAPTER 6 OBJECT-ORIENTED ANALYSIS PROCESS: IDENTIFYING USE cases: 131

gram [7]. The UML class diagram, also called an object model, represents the
static relationships between objects, inheritance, association, and the like. The ob-
Ject model represents an intemal view of the system, as opposed to the use-case
model, which represents the external view of the system. The object model shows
how the business is run. Jacobson, Ericsson, and Jacobson call the use-case model
a “what model,” in contrast to the object model, which is a “how model !

6.6.1 Use Cases under the Microscope

An important issue that can assist us in building correct use cases is the differen-
tiation between user goals and system interactions [5]. Use cases represent the
things that the user is doing with the system, which can be different from the users’
goals. However, by focusing on users’ goals first, we can come up with use éases
to satisty them. Let us take a closer look at the definition of use case by Jacobson
et al. |7, italics added to highlight the words that are discussed next]: “A Use Case
18 a sequence of transactions in a system whose task is to yield results of mea-
surable value 1o an individual actor of the system”
Now let us take a look at the key words of this definition:

* Use case. Use case is a special flow of events through the system. By definition,
many courses of events are possible and many of these are very similar. It is sug-
gested that, to make a use-case model meaningful, we must group the courses
of events and call each group a use-case class. For éxample, how you would bor-
row a book from the library depends on whether the book is located in the li-
brary, whether you are the member of the library, and so on. All these alierna-
tives often are best grouped into one or two use cases, called Borrow books and
Get an interlibrary loan (we will look at the relationships of these two use cases
in the next section). By grouping the uses cases, we can manage complexities
and reduce the number of use cases in a package.

* Actors. An actor is a user playing a role with respect to the system. When deal-
g with actors, it is important to think about roles rather than just people and
their job titles [5]. For instance, a first-class passenger may play the role of busi-
ness-class passenger. The actor is the key to finding the correct use cases. Ac-
tors carry out the use cases. A single actor may perform many use cases; fur-
thermore, a use case may have several actors performing it. An actor also can be
an external system that needs some information from the current system. Actors
can be the ones that get value from the use case, or they can just participate in
the use case [5].

* In a sysrem. This simply means that the actors communicate with the sysiem’s
NSE Case.

* A measurable value. A use case must help the actor to perform a task that has
some identifiable value; for example, the performance of a use case in terms of
price or cost. For example, borrowing books is something of value for a mem-
ber of the library.

IThe how model here does nol mean how the system can be implemented but how the scenarios can
be handled intermally.

132 FuRT THREE: ORIECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

Circulation Clerk

Member

Read books,
HE-WIFI-FPEI.'

Supplier
FIGURE &6-4
The use-case diagram depicts the extends and uses relationships, where the interfibrary loan Is
a special case of checking out books. Entering into the systern Is commaon to get an interlirary
Inan, borrow books, and return books use cases. so it is being "wsed™ by all thase use cases.

« Transaction. A transaction is an atomic set of activities that are performed either
fully or not at all. A transaction is triggered by a stimulus from an actor to the
system or by a point in time being reached in the system.

The following are some examples of use cases for the library (see Figure 6-4).
Three actors appear in Figure 6—4: a member, a circulation clerk, and a supplier.

» Use-case name: Borrow books. A member takes books from the library to read
at home, registering them at the checkout desk so the library can keep track of its
books. Depending on the member's record, different courses of events will follow.

» Use-case name: Ger an interlibrary loan. A member requests a book that the li-
brary does not have. The book is located at another library and ordered through
an interlibrary loan.

» Use-case name: Remrn books. A member brings borrowed books back to the
library.

* Use-case name: Check library card. A member submits his or her library card
to the clerk, who checks the borrower's record.

+ Use-case name: Do research, A member comes to the library to do research, The
member can search in a variety of ways (such as through books, journals, CD-
ROM, WWW) to find information on the subjects of that research.

CHAFTER 6: OBJECT-ORIENTED ANALYSIS PROCESS: |DENTIFVING USE cASESs 133

* Use-case name: Read books, newspaper. A member comes (o the library for a
quiet place to study or read a newspaper, journal, or book,

* Use-case name: Purchase supplies. The supplier provides the books, journals,
and newspapers purchased by the library.,

In Figure 64, the library has an environment with three types of actors (member,
circulation clerk, and supplier) and seven use cases (borrow books, return books, get
an interlibrary loan, do research, read books or newspaper, and purchase supplies).

6.6.2 Uses and Extends Associations

A use-case description can be difficult to understand if it contains too many alter-
natives or exceptional flows of events that are performed only if certain conditions
are met as the use-case instance is carried out [7]. A way to simplify the description
15 1o take advantage of extends and uses associations. The extends and uses asso-
ciations often are sources of confusion, so let us take a look at these relationships.

The extends association is used when you have one use case that is similar to
another use case but does a bit more or is more specialized; in essence, it is like a
subclass. In our example, checking out a book is the basic use case. This is the
case that will represent what happens when all goes smoothly. However, many
things can affect the flow of events. For example, the book already might be
checked out or the library might not have the requested hook. Therefore, we can-
not always perform the usual behavior associated with the given use case and need
to create other use cases (o handle the new situations, Of course, one option is to
put this variation within the use case. However, the use case guickly would become
cluttered with lots of special logic, which would obscure the normal flow [5],

To remedy this problem, we can use the extends association. Here, you put the
base or normal behavior in one use case and the unusual behaviors somewhere
else; but instead of cutting and pasting the shared behavior between the base (com-
mon) and more specialized use cases, you utilize an extends association to expand
the common behavior to fit the special circumstances, Figure 6-4 “extends™ Fig-
ure 6-3 o include extends and uses associations.

The uses association occurs when you are describing vour use cases and notice
that some of them have subflews in common. To avoid describing a subflow more
than once in several use cases, you can extract the common subflow and make it
a use case of its own. This new use case then can be used by other use cases, The
relationships among the other use cases and this new extracted use case is called
4 uges association. The uses association helps us avoid redundancy by allowing a
use case 1o be shared. For example, checking a library card is common among the
borrow books, return books, and interlibrary loan use cases (see Figure 6-4).

The similarity between extends and uses associations is that both can be viewed
as a kind of inheritance. When you want to share common sequences in several
use cases, utilize the uses associarion by extracting common sequences into a new,
shared use case. The extends association is found when you add a bit more spé-
cialized. new use case that extends some of the use cases that vou have.

Use cases could be viewed as concrete or abstract. An abstract use case is not
complete and has no initiation actors but is used by a concrefe use case, which

434 puRT THREE: OBJECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

does interact with actors. This inheritance could be used at several levels. Abstract
use cases also are the use cases that have uses or extends associations. All the use
cases depicted in Figure 6-4 are concrete, since they all have initiation actors.

Fowler and Scott provide us excellent guidelines for addressing variations in
use-case modeling [5]:

1. Capture the simple and normal use case first.

2. For every step in that use case, ask
» What could go wrong here?
« How might this work out differenty?

3. Extract common sequences into a new, shared use case with the uses associa-
tion. If you are adding more specialized or exceptional uses cases, take advan-
tage of use cases you already have with the extends association.

6.6.3 Identifying the Actors

Identifying the actors is (at least) as important as identifying classes, structures,
associations. atiributes, and behavior. The term actor represents the role a user
plays with respect to the system. When dealing with actors, it is important to think
about roles rather than people or job titles [5]. A user may play more than one role.
For instance, a member of a public library also may play the role of volunteer at
the help desk in the library. However, an actor should represent a single user; in
the library example, the member can perform tasks some of which can be done by
others and others that are unique. However, try to isolate the roles that the users
can play [1]. (See Figure 6-5.)

You have to identify the actors and understand how they will use and interact
with the system. In a thought-provoking book on requirement analysis, Gause and
Weinberg [6, pp. 69-70] explain what is kiown as the railroad paradox:

FIGURE 6-5

The difference between users and actors.
LSER Can play the role of ACTOR Performs USE CASE
Sylvia Member = Borrow book
Jackie Employes — | Omiler books

Lali Wolunteer | CheckIDs

CHAPTER &: OBJECT-ORIENTED ANALYSIS PROCESS: IDENTIEYING USE cases 135

When trying to find all users, we need to beware of the Railroad Paradox, When rail-
roads were asked to establish new stops on the schedule, they “studied the require-
ments,” by sending someone to the station at the designated time to see if anyone was
waiting for a train. OFf course, nobody was there because no stop was scheduled, so the
railroad tumed down the request because there was no demand,

Gause and Weinberg concluded that the railroad paradox appears everywhere there
are products and goes like this (which should be avoided):

1. The product is not satisfying the users.

2. Since the product is not satisfactory, potential users will not use it.

3. Potential users ask for a better product.

4. Because the potential users do not use the product, the request is denied.

Therefore, since the product does not meet the needs of some users, they are not
identified as potential users of a better product. They are not consulted and the
product stays bad [6]. The railroad paradox suggests that a new product actually
can create users where none existed before. Candidates for actors can be found
through the answers to the following questions:

* Who is using the system? Or, who is affected by the system? Or, which groups
need help from the system to perform a task?

* Who affects the system? Or, which user groups are needed by the system to per-
form its functions? These functions can be both main functions and secondary
functions, such as administration.

* Which external hardware or other systems (if any) use the system to perform tasks?

* What problems does this application solve (that is, for whom)?

* And, finally, how do users use the system (use case)? What are they doing with
the system.

When requirements for new applications are modeled and designed by a group
that excludes the targeted users, not only will the application not meet the users’
needs, but potential users will feel no involvement in the process and not be com-
mitted to giving the application a good try. Always remember Veblen’s principle:
“There's no change, no matter how awful, that won’t benefit some people; and no
change, no matter how good, that won't hurt some”

Another issue worth mentioning is that actors need not be human, although ae-
tors are represented as stick figures within a use-case diagram, An actor also can
be an external system, For example, an accounting system that needs information
from a system to update its accounts is an actor in that system [5].

Jacobson et al. provide us with what 1 call the two—-three rule for identifying
actors; Start with naming at least two, preferably three, people who could serve as
the actors in the system. Other actors can be identified in the subsequent iterations.
Remember this, like any other software development process, is an iterative
process, For example, assume we are modeling a company that specializes in mar-
keting jewelry. The first actor that comes to mind is the final customer; actually
three different regular customers would buy the product, Another type of actor is
the jewelry buyers for exclusive stores; they know all about quality and nothing

136 FanT THREE: ORJECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

else. A third type of customer is boutique owners, who know what designs are in
fashion. Each of these individuals requires his or her own use case, since they
represent different roles that can be played in the system, Still other actors might
be identified through subsequent iterations.

6.6.4 Guidelines for Finding Use Cases

When you have defined a set of actors, it is time to describe the way they interact
with the system. This should be carried out sequentially, but an iterated approach
may be necessary, Here are the steps for finding use cases [l

1. For each actor, find the tasks and functions that the actor should be able to
perform or that the system needs the actor to perform. The use case should rep-
resent a course of events that leads to a clear goal (or, in some cases, several
distinet goals that could be alternatives for the actor or for the sysiem).

. Name the use cases (see Section 6.6.8).

. Describe the use cases briefly by applying terms with which the user is famil-
iar. This makes the description less ambiguous.

L b

Once you have identified the use-cases candidates, it may not be apparent that
all of these use cases need to be described separately; some may be modeled as
variants of others. Consider what the actors want to do.

It is important to separate actors from users. The actors each represent a rale
that one or several users can play. Therefore, it is not necessary to model different
actors that can perform the same use case in the same way. The approach should
allow different users to be different actors and play one role when performing a
particular actor's use case, Thus, each use case has only one main actor. To achieve
this, you have 1o

» Isolate users from actors.

» Isolate actors from other actors (separate the responsibilities of each actor),

« Isolate use cases that have different initiating actors and slightly different be-
havior (if the actor had been the same, this would be modeled by a use-case al-
ternative behavior) [1].

While finding use cases, you might have to make changes to your set of actors.
All actor changes should be updated in the textual description of actors and use
cases. The change should be carried out with care, since changes to the set of ac-
tors affect the use cases as well.

When specifying use cases, you might discover that some of them fre variants
of each other, If so, try fo see how you can reuse the use case through extends or
uses associations [1],

6.6.5 How Detailed Must a Use Case Be? When to Stop
Decomposing and When to Continue
A use case, as already explained, describes the courses of events that will b car-

“ ried out by the system, Jacobson et al, believe that, in most cases, (oo much detail
may not be very useful,

CHAPTER 6: OBJECT-ORIENTED AMALYSIS PROCESS: IDENTIFYING USE cases 137

During analysis of a business system, you can develop one use-case diagram as
the system use case and draw packages on this use case to represent the various
business domains of the system. For each package, you may create a child use-
case diagram (see the case in Section 6.7 for an example). On each child use-case
diagram, you can draw all of the use cases of the domain, with actions and inter-
actions. You can further refine the way the use cases are categorized. The extends
and uses relationships can be vsed to eliminate redundant modeling of scenarics.

When should use cases be employed? Use cases are an essential tool in captur-
ing requirements and planning and controlling any software development project.
Capturing use cases is a primary task of the analysis phase. Although most use cases
are captured at the beginning of the project, you will uncover mare as you proceed.

How many use cases do you need? Ivar Jacobson believes that, for a 10-person-
year project, he would expeet 20 use cases (not counting the uses and extends as-
sociations). Other researchers, such as Fowler and Scott, would come up with 100
use cases for a project of the same magnitude. Some prefer smaller grained, more
detailed use cases. There is no magic formula; you need to be flexible and work
with whatever magnitude you find comfortable [5]. The UML specification rec-
ommends that at least one scenario be prepared for each significantly different
kind of use case instance. Each scenario shows a different sequence of interactions
between actors and the system, with all decisions definite. When you have arrived
at the lowest use-case level, which cannot be broken down any further, you may
create a sequence diagram and an accompanying collaboration diagram for the use
case. With the sequence and collaboration diagrams, you can model the imple-
mentation of the scenario [10].

6.6.6 Dividing Use Cases into Packages

Each use case represents a particular scenario in the system. You may model
either how the system currently works or how you want it to work. Typically, a
design is broken down into packages. You must narrow the focus of the scenarios
in your system. For example, in a library system, the various scenanios involve a
supplier providing books or a member doing research or borrowing books. In
this case, there should be three separate packages, one each for Borrow books, Do
research, and Purchase books. Many applications may be associated with the
library system and one or more databases used to store the information (see Fig-
ure 6-6),

6.6.7 Naming a Use Case

Use-case names should provide a general description of the use-case function. The
name should express what happens when an instance of the use case is performed.
Jacobson et al. recommend that the name should be active; often expressed in the
form of a verb (Borrow) or verb and noun (Borrow books). The naming should be
done with care; the description of the use case should be descriptive and consistent.
For example, the use case that describes what happens when a person deposits
money into an ATM machine could be named either receive money or deposit money.

4138 pinaT THREE: OBJECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

[—] =} F——1
Bormow
b
e Do ressarch Purchase books.
Borrow
books use case

A

Member

FIGURE &-6

A library systern can be divided into many packages, each of which encompasses multiple use
Cases.

6.7 DEVELOPING EFFECTIVE DOCUMENTATION

Documenting your project not only provides a valuable reference point and form
of communication but often helps reveal issues and gaps in the analysis and de-
sign. A document can serve as a communication vehicle among the project’s team
members, or it can serve as an initial understanding of the requirements. Blum [3]
concludes that management has responsibility for resources such as software, hard-
ware, and operational expenses. In many projects, documentation can be an im-
portant factor in making a decision about committing resources. Application soft-
ware is expected to provide a solution to a problem. It is very difficult, if not
impossible, to document 4 poorly understood problem. The main issue in docu-
mentation during the analysis phase is 1o determine what the system must do. De-
cisions about how the system works are delayed to the design phase, Blum raises
the following ‘questions for determining the importance of documentation: How
will a document be used? (If it will not be used, it is not necessary.) What 1s the
objective of the document? What is the management view of the decument? Who
are the readers of the document?

CHAPTER &: DBJECT-ORIENTED ANALYSIS PROCESS: IDENTIFYING USE cases 139

6.7.1 Organization Conventions for Documentation

The documentation depends on the organization's rules and regulations. Most or-
ganizations have established standards or conventions for developing documenta-
tion. However, in many organizations, the standards border on the nonexistent. In
other cases, the standards may be excessive. Too little documentation invites dis-
aster; too much documentation, as Blum put it, transfers energy from the problem-
solving tasks to a mechanical and unrewarding activity. Each organization deter-
mines what is best for it, and you must respond to that definition and refinement
[3]. Bell and Evans [2] provide us with guidelines and a template for preparing a
document that has been adapted for documenting the unified approach’s svstems
development (se¢ Appendix A). Remember that your modeling effart becomes the
analysis, design, and testing documentation. However this template which is based
on the unified approach life cycle (see Figure 1-1) assists you in organizing and
composing your models into an effective documentation.

6.7.2 Guidelines for Developing Effective Documentation

Bell and Evans [2] provide us the following guidelines for making documents fit
the needs and expectations of your audience:

* Common cover, All documents should share a common cover sheet that identi-
fies the document, the current version, and the individual responsible for the
content, As the document proceeds through the life cycle phases, the responsi-
ble individual may change. That change must be reflected in the cover sheet [2].
Figure 6-7 depicts a cover sheet template.

* 80-20 rule. As for many applications, the 80-20 rule generally applies for doc-
umentation: 80 percent of the work can be done with 20 percent of the docu-
mentation, The trick is to make sure that the 20 percent is easily accessible and
the rest (80 percent) is available to those (few) who need 1o know,

* Familiar vocabulary. The formality of a document will depend on how it is used
and who will read it. When developing a documentation use a vocabulary that
your readers understand and are comfortable with, The main objective here is to
communicate with readers and not impress them with buzz words.

* Make the document as short as possible. Assume that you are developing a man-
ual, The key in developing an effective manual is to eliminate all repetition; pre-
senl summaries, reviews, organization chapters in less than three pages; and
make chapter headings task onented so that the table of contents also could serve
as an index [4].

* Organize the document. Use the rules of good organization (such as the oTga-
nization's standards, college handbooks, Strunk and White's Elements of Stvle,
or the University of Chicago Manual of Style) within each section. Appendix
A provides a template for developing documentation for a project. Most CASE
tools provide documentation capability by providing customizable reports. The
purpose of these guidelines is to assist vou in creating an effective documen-
tation.

140 raRT THREE: OBJECT-ORIENTED AMALYSIS: USE-CASE DRIVEN

(Docwment Name)
for
(Product)
(Version Number)

Responaibie Individial
MName:
Title:

FIGURE 6-T
Cover sheet tamplate.

6.8 CASE STUDY: ANALYZING THE VIANET BANK ATM—THE
USE-CASE DRIVEN PROCESS

6.2.1 Background

Much of the work that must be done in the early stages of the system development
process involves gathering requirements and other related information. These ac-
tivities focus on gaining a better understanding of the business problem to be
solved and the requirements and restrictions related to the application being de-
veloped. As explained in the previous section, use cases are employed to caplure
information on how a system or business currently works or how you wish it 1o
work. Once you have a good understanding of the requirements, you can analyze
it further and begin to design your application. Using a CASE tool, such as the
Popkin Object Architect or a similar tool, enables you to sysiematically capture re-
quirements, identify classes, design, and finally implement the application.

Let us review object-oriented analysis, which is divided into the following
activities:
1. Identify the actors: Who is using the systern”
2. Develop a business process model using a UML activity diagram.
3. Develop the use case: What are the users doing with the system?
4. Develop interaction diagrams.
5. Dievelop a static UML class diagram.
6. If needed, repeat the preceding steps.

The following section provides a description of the ViaNet bank ATM system's
requirements.

* The bank client must be able to deposit an amount to and withdraw an amount
from his or her accounts using the touch screen at the ViaNet bank ATM kiosk.
Each transaction must be recorded, and the client must be able to review all
transactions performed against a given account. Recorded transactions must in-
clude the date, time, transaction type, amount, and account balance after the
ransaction.

CHAPTER 6: DBJECT-ORIENTED ANALYSIS PROCESS: IDENTIFYING USE cases 141

* A ViaNet bank client can have two types of accounts: a checking account and
savings account. For each checking account, one related savings account can
exist.

= Access to the ViaNet bank accounts is provided by a PIN code consisting of four

integer digits between 0 and 9.

One PIN code allows access to all accounts held by a bank client.

Mo receipts will be provided for any account transactions.

The bank application operates for a single banking institution only.

Neither a checking nor a savings account can have a negative balance. The sys-

tem should automatically withdraw money from a related savings account if the

requested withdrawal amount on the checking account is more than its current
balance, If the balance on a savings account is less than the withdrawal amount
requested, the transaction will stop and the bank client will be notified.

In this chapter, we identify the actors and use cases of the ViaNet bank ATM
system that will be used by subsequent chapters.

5.8.2 ldentifying Actors and Use Cases for the ViaNet Bank
ATM System

The bank application will be used by one category of users: bank clients. Notice
that identifying the actors of the system is an iterative process and can be modi-
fied as you learn more about the system. The actor of the bank system is the bank
client. The bank client must be able 1o deposit an amount to and withdraw an
amount from his or her accounts using the bank application.

The following scenarios show use-case interactions between the actor (bank
client) and the bank. In real life application these use cases are created by system
requirements. examination of existing system documentation, interviews, ques-
tionnaire, observation, etc.

* Use-case name: Bank ATM transaction. The bank clients interact with the bank
sysiem by going through the approval process. After the approval process. the
bank client can perform the transaction. Here are the steps in the ATM transac-
tion use case:

1. Insert ATM card,

2. Perform the approval process.

3. Askiype of wansaction,

4. Enter type of transaction.

5. Perform transaction.

6. Eject card.

7. Request take card.

8. Take card.

These sieps are shown in the Figure 68 actvity diagram.

* Use-case name: Approval process. The client enters a PIN code that consists of
four digits. [f the PIN code is valid, the client's accounts become available, (See
Figure 6-9.) Here are the steps:

1. Request password.

142 PaRT THREE: OBJECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

Password ot
acceplcd

accepied

FIGURE 6-8
Activities invehad in an ATM fransaction.

2. Enter password.
3. Verify password,

* Use-case name: fnvalid PIN. If the PIN code is not valid, an appropriate mes-
sage is displayed to the client. This use case extends the approval process. (See
Figure 6-9.)

= Use-case name: Deposit amount. The bank clients interact with the bank system
after the approval process by requesting to deposit money to an account. The
client selects the account for which a deposit is going to be made and enters an
amount in dollar currency, The system creates a record of the transaction. (See
Figure 6-10.) This use case extends the bank ATM transaction use case. Here
are the steps:

1. Request account type.

2. Request deposit amount.

3. Enter deposit amount.

4. Put the check or cash in the envelope and insert it into ATM.

= Use-case name: Deposit savings. The client selects the savings account for
which a deposit is going to be made. All other steps are similar to the deposit
amount use case. The system creates a record of the transaction. This use case
extends the deposit amount use case. (See Figure 6-11.)

CHAPTER 6: OBJECT-ORIENTED AMALYSIS PROCESS: IDENTIEYING USE cases 143

T LRSS e

<< exiends >
<< exiends >>

Checking
transaction history

£ DETOE >
Bank chient

FIGURE 6-8
‘Transaction use cases.

» Use-case name: Deposit checking, The client selects the checking account for
which a deposit is going to be made. All other steps are similar to the deposit
amount use case. The system creates a record of the transaction. This use case
extends the deposit amount use case. (See Figure 6-10.)

* Use-case name: Withdraw amount, The bank clients interact with the bank sys-
tem (after the approval process) by requesting to withdraw money from an ac-
count. The client tries to withdraw an amount from a checking account. After
vetrifying that the funds are sufficient, the transaction is performed, The system
creates a record of the transaction. This use case extends the bank ATM trans-
dction use case. (See Figure 6-10.) Here are the steps:

1. Request account type.

2. Request withdrawal amount,
3. Enter withdrawal amount,
4. Verfv sufficient funds.

5. Eject cash.

* Use-case name: Withdraw checking. The client tries to withdraw an amount from
his or her checking account. The amount is less than or equal to the checking
account’s balance, and the transaction is performed. The system creates a record
of the wansaction. Thié use case extends the withdraw amount use case, (See
Figure 6-10.)

144 prAT THREE: OBJECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

Bank ATM transaction

<< eatends 3> coEatendy =

<< extends >

Drepasit checking

/m checking

= acton =>
Bank client

£t HEE 33

FIGURE 6-10
The checking account use-cases.

» Usé-case name: Withdraw more from checking. The client tries to withdraw an
amount from his or her ¢hecking account. If the amount is more than the check-
ing account’s balance, the insufficient amount is withdrawn from the related sav-
ings account. The system creates a record of the transaction and the withdrawal
is successful. This use case extends the withdraw checking use case and uses the
withdraw savings use case. (See Figure 6-10.)

» Use-case name: Withdraw savings. The client tries to withdraw an amount from
a savings account. The amount is less than or equal to the balance and the trans-
action is performed on the savings account. The system creates a record of the
transaction since the withdrawal is successful. This use case extends the with-
draw amount use case. (See Figure 6-11.)

« Use-case name: Withdraw savings denied. The client withdraws an amount from
a savings account. If the amount is more than the balance, the transaction is
halted and a message is displayed. This use case extends the withdraw savings
use case. (See Figure 6-11.)

» Use-case name: Checking transaction history. The bank client requests a history
of transactions for a checking account. The system displays the transaction his-

CHAPTER 8 OBJECT-ORIENTED ANALYSIS PROCESS: IDENTIFYING USE cases 145

<& gxlends >

/ﬁ-\;_ﬂd:w savings

< Botor 5
Bank client

<< gxtends 5=

Withdraw sivings
denied
FIGURE 6-11

The savings account use-cases package.

tory for the checking account. This use case extends the bank transaction use case.
(See Figure 6-9.)

= Use-case name: Savings transaction history. The bank client requests a history
of transactions for a savings account. The system displays the transaction his-
tory for the savings account. This use case extends the bank transaction use case.
(See Figure 6-9.)

The use-case hst contains at least one scenario of each significantly different
kind of use-case instance, Each scenario shows a different sequence of interactions
between actors and the system, with all decisions definite. If the scenario consists
of an if statement, for each condition create one scenario.

Note that the exrends association is used when you have a use case that is
similar to another use case but does a bit more. In essence, it is a subclass, In the
example, the Checking withdraw use case extends the Withdraw amount use case.
The Withdraw amount use case represents the case when all goes smoothly, Howe-
ever, many things can affect the flow of events, such as when the withdrawal is for
mare than the amount of money in the checking account. Withdraw more from
checking is the use case that extends the Checking withdraw, You can put this vari-
ation within the Checking withdraw use case, too. However, this would clutter the
use case with lots of special logic, which would obscure the normal flow. To re-
view, the uses association occurs when a behavior is common to more than one

4486 PiRT THREE: OBJECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

uge case and you want to avoid copying the description of that behavior. The
Approval process is such a use case that is used by Bank transaction use case.

As you can seée, use cases are an essential tool for identifying requirements. De-
veloping use cases is an iterative process. Although most use cases are generated
at this phase of system development, you will uncover more as you proceed.
Fowler and Scott advise us to keep an eye out for them at all imes, Every use case
represents a potential requirement. '

6.8.3 The ViaNet Bank ATM Systems' Packages

Each use case represents a particular scenario in the system. As explained earlier,
it is better to break down the use cases into packages. Narrow the focus of the sce-
narios in the system. In the bank system, the various scenarios involve checking
account, savings account, and general bank transactions. (See Figure 6-12.)

Remember, use case is a method for capturing the way a system or business
works. Use cases are used to model the scenarios. The scenarios are described tex-
tually or through a sequence of steps. Modeling with use cases is a recommended
tool in finding the objects of a system. In the next chapter, we look at identifying
classes based on the use cases identified here.

6.9 SUMMARY

This chapter provides a detailed discussion of use-case driven object-oriented
analysis process and how to develop use cases. The main objective of the analysis
is to capture a complete, unambiguous, and consistent picture of the requirements
of the system. This is accomplished by constructing several models of the system.
These models concentrate on describing what the system does rather than how the
systemn does it. Separating the behavior of a system from the way it is implemented
requires viewing the system from the perspective of the users rather than that of
the machine. Analysis is a creative activity that involves understanding the prob-

FIGURE 6-12
The ViaMet bank business system can be divided into thres packages.
Bank System
SA4/0bject Architect
Thu Jul 24, 1998 17:52
Comment
Checlang 1 Savings
Accouni Account
£ HELs 3 2 L << (1588 B2
Transaction

CHAPTER 6 OBJECT-ORIENTED ANALYSIS PROCESS: IDENTIFYING USE cAsEs 147

lem, its associated constraints, and methods of overcoming those constraints. This
is an iterative process that goes on until the problem is well understood. The main
objective of object-oriented analvsis is to find out whar the problem is by devel-
oping a use-case model, which Jacobson et al. call the “what model.”

We saw that use cases are an essential tool in capturing requirements. Capturing
use cases is one of the first things to do in coming up with requirements. Every use
case is a potential requirement. A use-case model can be developed by talking to
typical users and discussing the various things they might want to do with the ap-
phication. Each use case or scenario represents what the user wants to do. Each use
case must have a name and short textual description, no more than 4 few paragraphs.

Requirements must be traceable across analysis, design, coding, and testing.
The unified approach follows Jacobson et al.'s life cycle to produce systems that
can be traced across all phases of the developments,

The key in developing effective documentation is to eliminate all repetition; pre-
sent summaries, reviews, organization chapters in less than three pages; and make
chapter headings task oriented so that the table of contents also could sérve as an
index.

Use the B0-20 rule: 80 percent of the work can be done with 20 percent of the
documentation. Make sure that the 20 percent is easily accessible and the rest (80
percent) is available to those few who néed to know.

Appendix A provides a template for documentation. However, for the most part,
the modeling activity is the main source of documenting the ODA.

KEY TERMS

Abstract use case (p. 133)
Actor (p. 128)

Concrete use case (p. 133)
Extends association (p. 133)
Two=three rule (p. 135)
Use cases (p. 128)
Use-case model (p. 130)
Uses gssociation (p. 133)

, REVIEW QUESTIONS

1. What is the purpose of analysis? Why do we need analysis?
2. Why is analysis a difficult task?
3. What approach 15 proposed in this chapter 1o manage complexity in the analysis phase?
4, What is the what model?
3. What 15 2 use-case mode]?
fi. What is involved in the analysis process? Where should we stant?
7. Describe the basic activities in object-oriented analysis,
& Whv 1= use-case modeling useful in analysis?
9. Who are the actors?
10, Why are uses and extends associations useful in use-case modeling?
11. Hos would vou identify: actors?

148 rFuRT THREE: OBIECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

12. What is the 80-20 rule?

13. Why is-documentation an important part of analysis?

14. The criterion for something to be an actor is that it lies outside the pan of the business
being modeled; yet it interacts with that part in some way. Why must the actor be some-
one or something outside the part of the business being modeled?

15. What is the difference between users and actors?

1. Lee Turner is director of information systems (I5) for the city of Providence. The IS de-
partment’s customers are the public library, the fire department, the police department,
the finance department, the sanitation department, and the water department. Lee be-
lieves clode communication with these custormers js the key to meeting their needs. Cur-
rently, the police and fire departments need fast access to a map of the city for dis-
patching the city’s ambulance and fire trucks to accident sites.

2. Who are the actors?
b. How would you incorporate the users’ needs into the sysiem developmeni process?
¢. Develop a simple use-case model.

2, The Book Store sells textbooks but also many other items, ranging from Rhode Island
College (RIC) sweatshirts to computers. The text purchasing department has unique
characteristics, including advance notice from faculty members and issues dealing with
unsold copies. Purchasing the other items is as for any retail store, An extension of both
arens i3 the checkout (or sales) process, This process should include the cash registers,
scanners, and sales slips. In fact, this process often is unduly slow. Develop an activity
diagram to show the business process of the book store.

3. All sudents must provide information about inoculations and dther health information
when entening BIC. A physical exam may be necessary al the Health Services office:
This health information is recorded on a health card, which often is hard to file and re-
trieve when needed, due (o the number of cards. Delays in filling and retrieving canse
problems for other functions on campus. For example, a studemt may not be enrolled un-
less the card 75 filed, What if the card is fled but not retrieved or otherwise recorded? A
student needs the data recorded 1o participaie in organized athletics. Again, the difficulty
in retrieving the card can produce difficulties for the Athletics department. How would
you go sbout creating use cases? Come up with one or two use-cases for health services.

4. Grandma, the owner of Grandma’s Soup Unlimited, cans her soup and sells it by mail
order. She wants to redo her ordering and shipping and, down the road, she would also
like to have a new payroll system in place, Your job is o design a system to handle or-
dering and shipping with an eye on the payroll system.)

She; along with most of her employees (majornty of them-are college studems), likes
the idea of the Graphical User interface interfaces and down the road utilizing e-com-
merce (electronic commerce) or doing business on the Internet. Grandma states that she
would like this new system 1o be visual and easy to use and assumes it will be able 1w
do all the things her spreadsheet program did.

Dunng the interview, Grandma mentioned that she wants hér system o be “expand-
able” In other words, she wants it 1o be able 1o grow with her needs; By grow, she was
also referring to her store becavse she plans on opening a few more stores in the near fu-
ture. She wants the flexibility of adding new/different types of services, such as new
soups, cans, and éven hiring different types of employees. Grandma is not sure what these
different employees will do yet, but she assures us-there will be some changes in the fu-
ture. She would also like 1o have bettér réports made from her data.

CHAPTER &: OBJECT-ORIENTED AMALYSIS PROCESS: IDENTIFYING USE cases 149

Some other aspects of Grandma’s payroll system were also discussed during the in-
terview, There are many different kinds of employees, such as elerk, telephone operator,
cook, manager, even owner of future stores: Some of these employees are full-time, oth-
ers dre pari-time, and some are even salaried. All of the employees have some com-
monalties, but there are also many differences among them,

Grandma makes a variety of soups, including Beef-Barley Soup, Beef Stew, Cheese
Soup, Cheesy Chicken-Com Chowder, Chicken Vegetable-Noodle Soup, Cream of Broe-
coli Soup, Cream of Chicken Soup, Cream of Potato Soup, Cream of Onion Soup, Cream
of Pea Soup, Fish Chowder, French Onion Soup, New England Clam Chowder, and Old
Fashioned Vegetable-Beef Soup. Each uses different ingredients. For instance. French
Onion Soup confains onion, butter, flour, French bread, cheddar cheese, wine, and
vegetables.

Here are some more réquirements:

s Grandma's philosophy about customer service is “first come, first served.”

* Cirandma needs a list of pending orders. (Keep in mind that sometimes the orders
really pileup.)

. Develop some of the use cases of the Grandma Soup Unlimited system.

REFERENCES

|. Anderson, Michael; and John Bergstrand. “Formalizing Use Cases with Message Se-
quence Chanis™ Master thesis, Department of Communication Systems, Lund Institute
of Technology, 1995
2 Bell Paula: and Evans, Charlotte. Mastering Docurnentarion with Document Masters
for Systems Development, Control and Delivery. New-York: John Wiley & Sons, 1989,
. Blum, Bruce 1. Software Engineering: A Holistic View, New York: Oxford University
Press, 1692,
Carroll, John M. “Minimalist Training."" Datamarion (November |, 1084), pp.125-36.
Fowler. Manin: and Kendall Scout. UML Disvilled. Reading, MA: Addison-Wesley,
a7
Gause, Donald G and G. M. Weinberg, Exploring Requirements: Gualivy Before
Design. New York: Dorset House Publishing, 1989,
lacobson. lvar; Maria Enicsson; and Agneta Iacobson. The Object Advantage Business
Becess Reangineering with Object Technology. Reading, MA: Addicon-Wesley, 1995,
& Marun James; and James Odell. Object-Oriented Analysis and Design. Englewood
Chifs. NI Prenuce-Hall, 1992,
9. Noreen Ronald. Object-Oriented Systems Analysis and Design, Englewood Cliffs, NI
Frentice-Hall, 1996,
10 (gect Modeling Quick Start. Popkin Software & Systems, 1997.
1. Semmwe Ken: and Marilyn Keller. Software Specificarion and Design: A Disciplined
irprvach for Real-Time Systems. New York: John Wiley & Sons, 1992

L

i de

=]

CHAPTER 7

Object Analysis:
Classification

Chapter Objectives

You should be able 1o define and enderstand

* The concept of classification. 5

= How w idennify classes with the noun phrase ap-
fega !

= How wo identify classes with the common clags pat-
= aporoach.

* How o identify clasies and object behavior analyzed
b seguence/collaboration modeling.

» How o identify classes with the classes; responsibili-
e, 2nd collsborators (CRC) approach.

7.1 INTRODUCTION

Ofpecs-onented analysis 1s a process by which we can identify classes that play a
reis @ achieving system goals and requirements. Unfortunately, classes rarely just
ar= Sere for the picking (3). Identification of classes is the hardest part of object-
oresied analysis and design. Booch [2, p. 145] argues that, “There is no such a
thims as the perfect class structure, nor the right set of objects. As in any engi-
STy u;s..ipl.ine. our design choice is compromisingly shaped by many compet-
=g factors” Gabriel, White, and Bobrow, the three designers of the object-ori-
smted language CLGS respond to the issue of how to identify classes: “That's a
famdemental question for which there is no easy answer. I try things” [4].

151

152 parT THREE: OBJECT-ORIENTED AMALYSIS: USE-GASE DRIVEN

In this chapter, we look at four approaches for identifying classes and their be-
haviors in the problem domain. ms is one of the hardest activi-
ties in object- . However, the process is incremental and iterative
and, furthermore, as you gain experience it will become easier to identify the
classes.

7.2 CLASSIFICATIONS THEORY

Classification . the process of checking to see if an object belongs to a category or
a class, is regarded as a basic attribute of human nature.

Booch [2, p. 146] explains that,

intelligent classification is part of all good science, . _ . Classification guides us in mik-
ing decisions about modularization. We may choose to place certain classes and objects
together in the same module or in differem modules, depending upon the sameness we
find among these declarations; coupling and cohesion are simply measures of this same-
ness. Classification also plays a role in allocating processes to procedures. We place cer-
tain processes together in the same processor or different processors, depending upon
packaging, performance, or relishility concerns,

Human beings classify information every instant of their waking lives. We rec-
ognize the objects around us, and we move and act in relation to them. A human
being is a very sophisticated information system, partly because he or she pos-
sesses a superior classification capability [11]. For example. when you see a new
model of a car, you have no trouble identifying it as a car. What has occurred here,
even though vou may never have seen this particular car before, is that you not
only can immediately identify it as a car, but you also can guess the manufacturer
and model. Clearly, you have some general idea of what cars look like, sound like,
do, and are good for—you have a notion of car-kind or, in object-oriented terms,
the class car.

Classes are an important mechanism for classifying objects. The chief role of a
class is to define the attributes, methods, and applicability of its instances. The
class car, for example, defines the property color. Each individual car (formally,
each instance of the class car) will have a value for this property, such as maroon,
yellow, or white,

It is fairly natural to partition the world into objects that have properties (at-
tributes) and methods (behaviors). It is common and useful padtitioning or classi-
fication, but we also routinely divide the world along a second dimension: We dis-
tinguish classes from instances. A class is a specification of structure, behavior,
and the description of an object. Classification 1s concened more with 1dentifying
the class of an object than the individual objects within a system. Marun and Odell
explain that classes are important because they create conceptual Fullding blocks
for designing systems:

In object-orienied programming, these building blocks. guide the designer in defining
the classeés and their data structures. In addition, object types (classes) provide an index

CHAPTER 7: OBJECT ANALYSIS: CLASSIFICATION 153

EesE 7-1 A s
‘“mmmnmmmmmnym.“}f 1

i
Ny ¥

S syse=m process. For instance, operations such as Hire, Promote, Retire, and Fire are
memaely tied to the object type (class) Employee, because they change the state of an
smsioves. In other words, an object should only be manipulated via the operations as-
sesieed with its type, Withotit object types (¢lasses), then, operations cannot be defined
ey, [6, p. 76)

T =md Gonzalez describe the recognition of concrete patierns or classes by
s 25 @ psychophysiological problem that involves a relationship between a
Se=we and a physical stimulus [11]. When you perceive a real-world object, you
s = nductive inference and associate this perception with some general con-
“=mes o clues that you have derived from your past experience. Human recogni-
S = zeality, is ' question of estimating the relative odds that the input data can
= ssecated with a class from a set of known classes, which depend on our past
Sipenences and clues for recognition, Intelligent classification is inte]lmtiﬂ)

Suss work and may seem rather arbitrary. That is how our minds work [6]. [Mar-

%5 = Odell have observed in object-oriented analysis and design that, “In Tact,

& aeect can be categorized in more than one way. For example, in Figure 7-1

wme pecson may regard the object Betty as a Woman. Her boss regards her as an

Smpioves. The person who mows her lawn classifies her as an Emplover. The lo-

= sl control agency licenses her as a Pet Owner, The credit bureau reports

Sum Beaty is.an instance of the object types called Good Credit Risk—and so on.”

Bep 771 P
T8 problem of classification may be regarded as one of discriminating things,

mee serween the individual objects but between classes, via the search for features

o =vanant attributes or behaviors among members of a class, Classification can

®e defined as the categorization of input data (things) into identifiable classes via

S sraction of significant features of attributes of the data from a background of

s==iant detail. Another issue in relationships among classes is studied in Chapter 8.

|

154 raAT THREE: OBJECT-ORIENTED ANALYSIS: USE-GASE DRIVEN

7.3 APPROACHES FOR IDENTIFYING CLASSES

In the following sections, we look at four alternative approaches for identifying
classes: the noun phrase approach: the common class patterns approach; the use-
case driven, sequence/collaboration mudr:hng appmach and the Classes, Respon-
sibifities, and Collaborators (CRC) approach.

The first two approaches have been included to increase your understanding of
the subject; the unified approach uses the use-case driven approach for identifying
classes and understanding the behavior of objects. However, you always can com-
bine these approaches 1o identify classes for a given problem.

Another approach that can be used for identifying classes is Classes, Responsi-
bilities, and Collaborators (CRC) developed by Cunningham, Wilkerson, and Beck.
Classes, Responsibilities. and Collaborators, more technique than method, is used
for identifying classes responsibilities and therefore their attributes and methods.

7.4 NOUM PHRASE APPROACH

The noun phrase approach was proposed by Rebecca Wirfs-Brock, Brian Wilker-
son, and Lauren Wiener [12]. In this method, you read through the requirements or
use cases looking for noun phrases. Nouns in the textual description are considered
to be classes and verbs to be methods of the classes (identifying methods will be
covered in Chapter 8). All plurals are changed to singular, the nouns are listed, and

+ the list divided into three categories (see Figure 7-2): relevant classes, fuzzy classes

(the “fuzzy area.” classes we are not sure about), and irrelevant classes.

It is safe to scrap the irrelevant classes, which either have no purpose or will be
Unnecessary. Candidatr: c]asses mm_ a.r_a_s_e.lgt_:_[_qd_fmm the other two categories.
Eeep in mind that ldr.nuﬁrmg classes and developing a UML class diagram just
like other activities is an iterative process. Depending on whether such object mod-
eling is for the analysis or design phase of development, some classes may need
to be added or removed from the model and, remember, flexibility is a virtue. You
must be able to formulate a statement of purpose for each candidate class: if not,

simply eliminate it.

7.4.1 ldentifying Tentative Classes
The following are guidelines for selecting classes in an application:

* Look for nouns and noun phrases in the use cases,

+ Some classes are implicit or taken from general knowledge.

*+ All classes must make sense in the application domain; avoid computer imple-
mentation classes—defer them to the design stage.

* Carefully choose and define class names.

As explained before, finding classes is not easy. The more practice you have,
the better you get at identifying classes. Finding classes is an incremental and it-
erative process. Booch [2, p. 149] explains this point elegantly: “Intelligent clas-
sification 1s intellectually hard work, and it best comes about through an incre-
mental and iterative process. This incremental and iterative nature is evident in the
development of such diverse software technologies as graphical user interfaces,

CHAPTER 7: OBJECT ANALYSIS: CLASSIFICATION 155

“=ng = noun phrase siralegy, candidate classes can be divided Into three categories; Rale-
vt Classes, Fuzzy Area or Fuzzy Classes (thuse classas that we are not sure aboul), snd Ir-
s Classes.

catabase standards; and even fourth-generation languages.” As Shaw observed [9,

P 123], in software engineering, '
e development of individual abstractions often follows & common pattern. First the
problems are solved ad hoc. As experience accumulates, some solutions turn out to work
Setzer than others, and a sort of folklore is passed informally from person to person.
Eventually, the useful solutions are understood more systematically, and they are codified
and analyzed. This enables the development of madels that support automatic imple-
mentation and theories that allow the generalization of the solution. This in turn enables
+ more sophisticated level of practice and allows us to tackle harder problems—which
%= often approach ad hoc, starting the cycle over again.

rumcmmmmlm-mmmm
% following guidelines help in selecting candidate classes from the relevant and
fuzzy caegonies of classes in the problem domain.

* Redundant classes. Do not keep two classes that express the same information.
If more than one word is being used to describe the same idea. select the one
that is the most meaningful in the context of the system. This is part of building
= common vocabulary for the system as a whole [12]. Choose your vocabulary
czrefully: use the word that is being used by the user of the system.

* Adjectives classes. Wirfs-Brock, Wilkerson, and Wiener warn us about adjec-
uves: “Be wary of the use of adjectives. Adjectives can be used in many ways,
An adjective can suggest a different kind of object, different use of the same ob-
=t or it could be utterly irrelevant. Does the object represented by the noun
Sehave differently when the adjective is applied to it? If the use of the adjective
signals that the behavior of the object is different, then make a new class™ [12,
o 35]. For example, Adult Members behave differently than Youth Members, so
the two should be classified as different classes.

* Amribute classes. Tentative objects that are used only as values should be de-

fimed or restated as attributes and not as a class: For example, Client Status and

Demographic of Client are not classes but attributes of the Client class.

Irrelevant classes. Each class must have a e and every class should be

uE"a

clearly defined and necessary. You must formulate a statement of purpose for

==ch candidate class. If you cannot come up with a statement of purpose, sim-
piv eliminate the candidate class.

156 paaT THREE: OBJECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

(—y Review redundant classes ‘j

Review imelevant classes Review adjectives

L} Review wtribufes {—J
FIGURE 7-3

The procass of eliminating the redundant elasses and refining the remaining classes s not se-
quential, You can move back and forth among these steps as often as you like,

Remember that this is an incremental process, Some classes will be missing,
others will be eliminated or refined later. Unless you are starting with a lot of do-
main knowledge, you probably are missing more classes than you will climinate.
Alﬂmugh some clasées ultimately may become superclasses, al this stage simply
identify them as individual, specific classes. Your design will go through many
stages on its way to completion, and you will have adequate opportunity to revise
it [12].

Like any other activity of software development, the process of identifying rel-
evant classes and eliminating irrelevant classes is an incremental process. Each it-
eration often uncovers some classes that have been overlooked. The repetition of
the entire process, combined with what you already have learned and the rework-
ing of your candidate classes will enable you to gain a better understanding of the
system and the classes that make up your application. Classification is the essence
of good object-oriented analysis and design. You must continue this refining cycle
through the development process until you are satisfied with the resulls. Remem-
ber that this process (of eliminating redundant classes, classes containing adjec-
tives, possible attributes, and irrelevant classes) is not sequential. You can move
back and forth among these steps as often as you like (see Figure 7-3).

7.4.3 The ViaNet Bank ATM System: ldentifying Classes by Using
MNoun Phrase Approach

To better understand the noun phrase method, we will go through a case and ap-
ply the noun phrase strategy for identifying the classes. We must start by reading
the use cases and applying the principles discussed in this chapter for identifying
classes (see Chapter 6 for the description and use cases of the bank system).

7.4.4 Initial List of Noun Phrases: Candidate Classes
The initial study of the use cases of the bank system produces the following noun
phrases (candidate classes—maybe).

Account
Account Balance

CHAPTER 7: OBJECT ANALYSIS: CLASSIFIcaTION 15T

Amdunt
Approval Process
AT™ Card

ATM Machine

Bank Client
Card

Cazh

Check

Checking
Checking Account
Clieny

Client’s Account
Currency

Dollar

Envelope

Four Digits
Fand

Invalid PIN
Message

Money
Password

PIN

PIN Code
Record

Savings

Savings Account
Step

System
Transaction
Transaction History

It is safe to eliminate the irrelevant classes, The candidate classes must be se-
lected from relevant and fuzzy classes. The following irrelevant classes can be
climinated because they do not belong to the problem statement: Envelope, Four
Digits, and Step. Strikeouts indicate eliminated classes.

Accouni

Accoupt Balance
Amount
Approval Process
ATM Card

458 raRT THREE: ORIECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

ATM Machine
Bank
BankClient

Card

Cash

Check

Checking
Checking Account
Client

Client’s Account
Currency

Dollar

Brmelope

: Disi

Fund

Invalid PIN
Message

Money
Password

PIN

PIN Code
Record

Savings

Savings Account
Sep

System
Transaction
Transaction History

7.4.5 Reviewing the Redundant Classes and Building a
Commeon Vocabulary

We need to review the candidate list to see which classes are redundant. If differ-
ent words are being used to describe the same idea, we must select the one that is
the most meaningful in the context of the system and eliminate the others.

The following are the different class names that are heing used to refer to the

same concept:
Client, BankClient = BankClient (the term chosen)
Account, Client’s Accounl = Account
PIN, PIN Code = PIN

Checking, Checking Account = Checking Account

CHAPTER 7: OBJECT ANALYSIS: CLASSIFIcATION 159

mﬁaﬂmm = Savings Account

Fund, Money = Fund
-.-.mulr:‘nrd,t‘ar& = ATM Card
15 the revised list of candidate classes:
Aumunt
“ccount Balance

—
ATM Card

.- Fla &y I{isimljr-

WMMMIMM
mhmmnmmmmmmmmah" ctives. The

muonmthm Does the object represented by the noun behave differently

4160 PuET THREE: ORJECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

when the adjective is applied to it? If an adjective suggests a different kind of class
or the class represented by the moun behaves differently when the adjective is
applied to it, then we need to make a new class. However, if it is a different use
of the same object or the class is irrelevant, we must eliminate it.

In this example, we have no classes containing adjectives that we can eliminate.

7.4.7 Reviewing the Possible Attributes

The next review focuses on identifying the noun phrases that are attributes, not
classes, The noun phrases used only as values should be restated as attributes. This
process also will help us identify the attributes of the classes in the system.

Amount: A value, not a class.

Account Balance: An attribute of the Account class.

Invalid PIN; Tt is only a value, not a class.

Password: An attribute, possibly of the BankClient class.
Transaction History: An attribute, possibly of the Transaction class.
PIM: An attribute, possibly of the BankClient class.

Here is the revised list of candidate classes. Notice that the eliminated classes
are strikeouts (they have a line through them).

Agcount
otk il
S
Approval Process
ATM Card

Bank
BankClient
e

Cash

Check

i
Checking Account
et

Currency

Dollar

Envelope

Fous Digits
Fund
brpbetP
Message

Meney

CHAPTER 7: OBJECT ANALYSIS: cLAssIFicarion 161

Frifibliairg
pris
s
Record
Bervirps

Savings Account

Step

System

Transaction

T st
7.4.8 Reviewing the Class Purpose
Identifying the classes that play a role in achieving system goals and requirements
15:@ major activity of object-oriented analysis. Each class must have a purpose.
Every class should be clearly defined and necessary in the context of achieving the
system's goals. If you cannot formulate a statement of purpose for a class, simply

eliminate it. The classes that add no purpose to the system have been deleted from
the list. The candidate classes are these:

ATM Machine class: Provides an interface to the ViaNet bank.

ATMCard class: Provides a client with a key to an account.

BankClient class: A client is an individual that has a checking account and, pos-
sibly, a savings account.

Bank class: Bank clients belong to the Bank. Ii is a repository of accounts and
processes the accounts’ transactions.

Account class: An Account class is a formal (or abstract) class, it defines the
common behaviors that can be inherited by more specific classes such as
CheckingAccount and SavingsAccount,

CheckingAccount class: It models a client’s checking account and provides
more specialized withdrawal service.

SavingsAccount class: It models a client’s savings account.

Transaction class: Keeps track of transaction, time, date, type, amount, and
balance,

No doubt, some classes are missing from the list and others will be eliminated
or refined later. Unless you are starting with a lot of domain knowledge, you prob-
ably will miss more classes than you will eliminate. Afier all, this is an incremen-
tal process; as you leam more about the problem, your design will go through
many stages on its way to completion, Remember, there is no such thing as the
“right” set of classes. However, the process of identifying classes can improve
gradually through this incremental process,

The major problem with the noun phrase approach is that it depends on the com-
pleteness and correciness of the available document, which is rare in real life. On the
other hand, large volumes of text on system documentation might lead to too many

162 FART THREE: DBJECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

candidate classes, Even so, the noun phrase exercise can be very educational and use-
ful if combined with other approaches, especially with use cases as we did here.

7.5 COMMON CLASS PATTERNS APPROACH

The second method for identifying classes is using commaon class patterns, which
is based on a knowledge base of the common classes that have been proposed by
various researchers, such as Shlaer and Mellor [10], Ross [8], and Coad and
Yourdon [3]. They have compiled and listed the following patterns for ﬁndmg the
ca.ndid.atc class and object: ===

v Nmne. Eﬂncep: class
Context. A concept 15 a particular idea or understanding that we have of our
world. The concept class encompasses principles that are not tangible but
used to organize or keep track of business activities or communications. Mar-
tin and Odell [6, p. 236] describe concepts elegantly, “Privately held ideas or
notions are called conceptions. When an understanding is shared by another,
it becomes a concept. To communicate with others, we must share our indi-
vidually held conceptions and arrive at agreed concepts.” Furthermore, Mar-
tin and Odell explain that, without concepts, mental life would be total chaos
since every item we encountered would be different.
Example. Performance is an example of concept class object,

= Name. Events class
Context, Events classes are points in time that must be recorded. Things hap-
pen, usually to something else at a given date and time or as a step in an
ordered sequence. Associated with things remembered are attributes (after all,
the things to remember are objects) such as who, what, when, where, how, or
why.
Example. Landing, interrupt, request, and order are possible events.

* Name. Organization class
Context. An organization class is a collection of people, resources, facilities,
or groups to which the users belong; their capabilities have a defined mission,
whose existence is largely independent of the individuals.
Example, An accounting department might be considered a potential class.

* Name. People class (also known as person, roles, and roles played class)
Context. The people class represents the different roles users play in interact-
ing with the application. People carry out some function. What role does a
person play in the system? Coad and Yourdon [3] explain that a class which
is represented by a person can be divided into two types: those representing
users of the system, such as an operator or clerk who interacts with the sys-
tem; and those representing people who do not use the system bur about
whom information is kept by the system.
Example. Employee, client, teacher, and manager are examples of people.

* Name, Places class
Context. Places are physical locations that the system must keep information
about,

CHAPTER 7: ORJECT ANALYSIS: cLassiFicamion 163

Example. Buildings, stores, sites, and offices are examples of places.
» Name. Tangible things and devices class
Contexs. This class includes physical objects or groups of objects that are tan-
gible and devices with which the application interdcts.
Example. Cars are an example of tangible things, and pressure sensors are an AT
example of devices, =g

7.5.1 The ViaNet Bank ATM System: ldentifying Classes
by Using Common Class Patterns

To better understand the common class pattérns approach, we once again will try
to identify classes in the bank system by applying common class patterns, The
common class patterns are concepts, events, organization, people, places, and tan-
gible things and devices.

Events classes are points in time that must be recorded. Associated with things
remembered are atinbutes (after all, the things to remember are objects) such as
who, what, when, where, how, or why. The bank system events classes follow,

Account class: An Account class 15 a formal (or abstract) class; it defines the
common behaviors that can be inherited by more specific classes such as
CheckingAccount and SavingsAccount.

CheckingAccount class: It models a client’s checking account and provides
more specialized withdrawal service.

SavingsAccount class: It models a client’s savings account.

Transaction class: It keeps track of transaction, time, date, type, amount, and
balance.

Organization classes specify collections of people, resources, facilities, or
groups 1o which the users belong, and their capabilities have a defined mission,
whose existence 15 largely independent of individuals. The bank system’s organi-
zation class follows.

Bank class: Bank clients belong to the Bank. It is a repository of accounts and
processes the accounts’ transactions.

Peaple and person classes answer this question: What role does a person play
in the system? Coad and Yourdon [3] explain that a class being represented by a
person can be divided into two types: those representing the users of the system,
such as an operator or a clerk who interacts with systems, and those people who
do not use the system but about whom information is kept by the system. The fol-
lowing is the bank system people and person class,

BankClient class: A client is an individual that has a checking account and, pos-
sibly, a savings account.

Flace classes represent physical locations, buildings, stores, sites, or offices
about which the system needs to keep track. Place classes are not applicable to this
bank system.

1864 F:ART THREE: OBJECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

The rangible things and devices classes represent physical objects or groups of
objects that are tangible and devices with which the application interacts. In the
banking system, tangible and device classes include these items.

ATMMachine class: It allows access to all accounts held by a bank client.

7.6 USE-CASE DRIVEN APPROACH: IDENTIFYING CLASSES
AND THEIR BEHAVIORS THROUGH SEQUENCE/COLLABORATION
MODELING

The use-case driven approach is the third approach that we examine in this chap-
ter and the one that is recommended. From the previous chapter, we leamed that
use cases are employed 1o model the scenarios in the system and specify what ex-
ternal actors interact with the scenarios. The scenarios are described in texi or
through a sequence of steps. Use-case modeling is considered 4 problem-driven
approach to object-oriented analysis, in that the designer first considers the prob-
lem at hand and not the rciatinnship between objects, as in a data-driven approach.

Mudelmg with use cases is a recommended aid in finding the objects of a sys-
“tem and is the technique used by the unified approach, Once the system has been
“described in terms of its scenarios, the modeler can examine the textual descrip-
tion or steps of each scenario to determine what objects are needed for the sce-
nario to occur. However, this 1s not a magical process in which you start with use
cases, develop a sequence diagram, and voila, classes appear before your eyes. The
process of creating sequence or collaboration diagrams is a systematic way to think
about how a use case (scenario) can take place; and by doing so, it forces you to
think about objects involved in your application.

When building a new system, designers mode! the scenarios of the way the sys-
tem of business should work. When redesigning an existing system, many model-
ers choose to first model the scenanios of the current system, and then model the
scenarios of the way the system should work. Developing scenarios also requires
us to think about class methods, which will be studied in Chapter 8.

7.6.1 Implementation of Scenarios

The UML specification recommends that at least one scenario be prepared for each
significantly different use-case instance. Each scenario shows a different sequence
of interaction between actors and the system, with all decisions definite. In essence,
this process helps us to understand the behavior of the system’s objects.

When you have armived at the lowest use-case level, you may create & child se-
quence diagram or accompanying collaboration diagram for the use case. With the
sequence and collaboration diagrams, you can model the implementation of the
scenario [7].

Like use-case diagrams, sequence diagrams are used 1o model scenarios in the
systems, Whereas use cases and the steps or textual descriptions that define them
offer a high-level view of a system, the sequence diagram enables you to model a
more specific analysis and also assists in the design of the system by modeling the
interactions between objects in the system.

CHAPTER 7: OBJECT ANALYSIS: cLagsiFication 165

As explained in Chapter 5, in a sequence diagram, the objects involved are
drawn on the diagram as a vertical dashed line, with the name of the objects at the
top. Horizontal lines corresponding to the events that occur between objects are
drawn between the vertical object lines. The event lines are drawn in sequential
order, from the top of the diagram to the bottom. They do not necessarily corre-
spond to the steps defined for a use-case scenario.

7.6.2 The ViaNet Bank ATM System: Decomposing a Use-Case
Scenario with a Sequence Diagram: Object Behavior Analysis

A sequence diagram represents the sequence and interactions of a given use case
or scenario. Sequence diagrams are among the most popular UML diagrams and,
if used with an object model or class diagram, can capture most of the informa-
tion about a system [5]. Most object-to-object interactions and operations are con-
sidered events, and events include signals, inputs, decisions, interrupts, transitions,
and actions to or from users or external devices. An event also is considered o be
any action by an object that sends information. The event line represents a mes-
sage sent from one object w-ancther, in which the “from™ object is requesting an
operation be performed by the “to” object. The “to” object performs the operation
using a method that its class contains. Developing sequence or collaboration dia-
grams requires us to think about objects that generate these events and therefore
will help us in identifying classes.

To identify objécts of a system, we further analyze the lowest level use cases
with a sequence and collaboration diagram pair (actually, most CASE tools such
as SA/Object allow you to create only one, either a sequence or a collaboration di-
agram, and the system generates the other one). Sequence and collaboration dia-
grams represent the order in which things occur and how the objects in the system
send messages to one another. These diagrams provide a macro-level analysis of
the dynamics of a system. Once you stant creating these diagrams, you may find
that objects may need to be added to satisfy the particular sequence of events for
the given use case.

You can draw sequence diagrams to model ¢ach scenario that exists when a
BankClient withdraws, deposits, or needs information on an account. By walking
through the steps, you can determine what objects are necessary for those steps to
take place. Therefore, the process of creating sequence or collaboration diagrams
can assist you in_identifying classes or objects of the system. This approach can
be combined with noun phrase and class categorization for the best results.

In Chapter 6, we identified the use cases for the bank system, The following are
the low level (executable) use cases:

Deposis Checking

Deposit Savings

Invalid PIN

Withdraw Checking

Withdraw More from Checking
Withdraw Savings

Withdraw Savings Denied

166 PrRT THREE: OBJECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

Checking Transaction History
Savings Transaction History

Let us create a sequencefcollaboration diagram for the following use cases:

* Invalid PIN use case
» Withdraw Checking use case
» Withdraw More from Checking use case

Sequence/collaboration diagrams are associated with a use case. For example,
to model the sequence/collaboration diagrams in SA/Object, you must first select
- use case, such as the Invalid PIN use case, then associate a sequence or collab-
oration child process.

To create a sequence you must think about the classes that probably will be in-
volved in a use-case scenario. Keep in mind that use case refers toa process, not a
class. However, a use case can contain many classes, and the same class can occur
in many different use cases. Point of caution: you should defer the interfaces classes
to the design phase and concentrate on the identifying business classes here.

Consider how we would prepare 8 sequence diagram for the Invalid PIN use
case. Here, we need to think about the sequence of activities that the actor
BankClient performs:

* Insert ATM Card,
= Enter PIN number,
* Remove the ATM Card,

Based on these activities, the system should either grant the access right to the
account or reject the card, Next, we need to more explicitly define the system. With
what are we interacting? We are interacting with an ATMMachine and the
BankClient. 5o, the other objects of this use case are ATMMachine and BankClient.

Now that we have identified the objects involved in the use case, we need to list
them in a line along the top of a page and drop dotted lines beneath each object
(see Figure 7—4). The client in this case is whoever iries [0 access an account

FIGURE T-4
The sequence diagram for the Invalid PIN use case,

Client ATMMachine BankClien!

Tnsert ATM card _.J'
I

Reéquest FIM !
En'l:l:rF‘B‘lnumbu’_’i
!r_ Verify FIN number
I‘ Bad PIN number
L]
I
|
L]
|
|
|
]

g
2
t

§

Eject ATM card
Request take card

i
g
Egl

RO i, ST

'YYY O

CHAPTER 7: OBJECT ANALYSIS: cLassiFicaTion 167

through the ATM, and may or may not have an account. The BankClient on the
other hand has an account.

The dotted lines are the lifelines discussed in Chapter 5. The line on the right
represents an actor, in this case the BankClient, or an event that is outside the sys-
tem boundary. Recall from Chapter 5 that an event arrow connect objects. In
effect, the event arrow suggests that a message is moving between those two ob-
jects. An example of an event message is the request for a PIN. An event line can
pass over an object without stopping at that object. Each event must have a de-
scriptive name. In some cases, several objects are active simultaneously, even if
they are only waiting for another object to return information to them. In other
cases, an object becomes active when it receives a message and then becomes
inactive as soon as it responds [5]. Similarly, we can develop sequence diagrams
for other use cases (as in Figures 7-5 and 7-7). Collaboration diagrams are just
another view of the sequence diagrams and therefore can be created automati-
cally; most UML meodeling tools automatically create them (see Figures 7-6
and 7-8),

The following classes have been identified by modeling the UML sequence/
collaboration diagrams: Bank, BankClient, ATMMachine, Account, Checking Ac-
count, and Savings Account.

Similarly other classes can be identified by developing the remaining sequence/
collaboration diagrams. Developing the other sequence/collaboration diagrams has
been left as an exercise; see problem 1-3.

| Print receipt

FIGURE 7-5
Sequance diagram for the Withdraw Checking use case.

BankClient ATMMachine Account Checking Account
1 Insert ATM cand .j | :
P | |
I Enier PIN ._| | "
: [Verify PIN _._t :
1 FIN OK | I
L‘ Request kind i‘ = I
[Emerkind | :
i‘ Request amount | I :
i Enler amount ’i | i
I 1 | Withdraw checking mmm._l
E : I* Withdrawal successful 3
I i‘Tnusm:inn successful | i
| Dizpense cash | | |
: Request take cash) I I
! Take cash | | I
%‘ Request conmtinuation i : :
T | |

| ! !

168 praAT THREE: OBJECT-ORIENTED AMALYSIS: USE-CASE DRIVEN

uest continwation

il

Print receipt

Y

4+— +—
5: Process rAnsaction Z: Enter kind
4: Enter amount
13: Terminate
Accoun ATMMachine: Definition BankCliem
— =
#: Transaction succesd 1: Reguest kind
3: Request amount
9: Dispense cash
10 Reguest-take cush
11: Take cash
12: Request conhmuation
14: Print receipl
T: Withdrawal successful &: Whthdrawal Checking Aceount
CheckingAccount
FIGURE T-&
The collaboration diagram for the Withdraw Checking use case.
FIGURE 7-T
The sequence disgram for the Withdraw More from Checkiing use case.
BankClient ATMMachine Accoiin Checking Account SavingsAccount
% : | I i
Insert ATM cord
F - n ! | | |
lg quEst passwor } |Ii : :
| st pasiwaord
o o Pt Verify password | | |
| k P ok] | |
I gty J I |
| Request kind I [| |
‘* - : | |
L
}T Request amont '1 I | i
1 I | |
; Enter amount > 1 1 |
| | Process minssction | | |
I = d Withdrow checking account I l
I I i Tyl |
| | | | Withdraw savings ':
| | | I
I | | | ‘Withdawal savings |
I | | i successful 1
! ! b Withdrawsl successful H :
| | Lg |
1 k'framwjun successful | :
Il" Dispente cash ' :
Request take cash |
M 1 I
] I
I
I
|
I
|
I
I

e S

— e md — — e —

e —— — s

R ———————— T

CHAPTER 7: DBJECT ANALYSIS: cLassIFication 169

—_—
6: Withdraw checking account
Accouni CheckingAccoint
——
9: Withdrawal successiul
5: Process transnction /
2: Enter kind 10: Transaction successful

4: Enter amount

ATMMachine
15: Terminue f
B Withdrawal smdrl_gs suceessful
BinkClisnt / Rﬁl-“m kind

3: Request amonnl
11; Dispense cash
12: Request rake cash
13: Take cash

14: Request continuation SavingsAccount
1% Print receipt

FIGURE T-8
The collabaration diagram for the Withdraw More from Checking use case,

7.7 CLASSES, RESPONSIBILITIES, AND COLLABORATORS

Classes, responsibilities, and collaborators (CRC), developed by Cunningham, Wilk-
erson, and Beck, was first presented as a way of teaching the basic concepts of ob-
ject-oriented development [12]. Classes, Responsibilities, and Collaborators is a
technique used for identifying classes’ responsibilities and therefore their attributes
and methods. Furthermore, cmm Responsibilities, mm
Enfy classes. Classes, Responsibilities, and Collaborators is more a teaching tech-
nigue than a method for identifying classes. Classes, Responsibilities, and Collabo-
rators is based on the idea that an object either can accomplish-a certain responsi-
bility itself or it may require the assistance of other objects. If it requires the
assistance of other objects, it-must collaborate with those objects to fulfill its re-
S-pﬁl‘i&lhll]t}" [13]. By identifying an object’s responsibilities and collaborators (co-
operative objects with which it works) you can identify its attributes and methods,
Classes, Responcibilities, and Collaborators cards are 4" X 6" index cards, All
the information for an object is written on 4 card, which i§ “cheap, portable, read-
ily available, and familiar, Figure 7-9 shows an idealized card. The class name
should appear in the upper left-hand corner. a bulleted list of responsibilities
should appear under it in the left two thirds of the card, and the list of collabora-
tors should appear in the right third. However, rather than simply tracing the de-
tails of a collaboration in the form of message sending, Classes, Respunmbmues
and Collaborators cards place the designer’s focus on the motivation for collabo-
ration by representing (potentially) many messages as phrases of English text.

170 PART THREE: OBJECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

ClassName Collaboratory
Responsibilities o

FIGURE 7-9
A Classes, Responaibilities, and Collaborators (CRC) index card,

Classes, Responsibilities, and Collaborators stresses the importance of creating
objects, not to meet mythical future needs, but only under the demands of the mo-
ment. This ensures that a design contains only as much information as the designer
has directly experienced and avoids premature complexity. Working in teams helps
here. because a concerned designer can influence team members by suggesting
scenarios aimed specifically at suspected weaknesses or omissions.

7.7.1 Classes, Responsibilities, and Coliaborators Process

The Classes, Responsibilities, and Collaborators process consists of three sieps
(see Figure 7-10) [1):

1. Identify classes' responsibilities (and identify classes).
2. Assign responsibilities.
3. ldentify collaborators.

Classes are identified and grouped by common attributes, which also provides
candidates for superclasses. The class names then are written onto Classes, Respon-
sibilities. and Collaborators cards. The card also notes sub- and superclasses to show
the class structure, The application’s requirements then are examined for actions and
information associated with each class to find the responsibilities of each class.

Next, the responsibilities are distributed; they should be as general as possible
and placed as high as possible in the inheritance hierarchy.

The idea in locating collaborators is to identify how classes interact. Classes
(cards) that have a close collaboration are grouped together physically.

FIGURE 7-10
The Classes, Resposibilities, and Collaborators process.

Iclentify
classes and
responsibility

Assign
redponsibility

CHAPTER 7: OBJECT ANALYSIS: CLASSIFICATION 1741

7.7.2 The ViaNet Bank ATM System:
Classes, Responsibilities, and Collaborators'

We already identified the initial classes of the bank system. The objective of this
example is to identify objects’ responsibilities such as attributes and methods in
that system.

Account and Transaction provide the banking model. Note that Transaction as-
sumes an active role while money is being dispensed and a passive role thereafier.

The class Account is responsible mostly to the BankClient class and it collab-
orates with several objects to fulfill its responsibilities. Among the responsibilities
of the Account class to the BankClient class is to keep track of the BankClient bal-
ance, account number, and other data that need to be remembered, These are the
attributes of the Account class. Furthermore, the Account class provides certain
services or methods, such as means for BankClient to deposit or withdraw an
amount and display the account’s Balance (see Figure 7-11).

Classes, Responsibilities, and Collaborators encourages team members to pick up
the card and assume a role while “executing” a scenario. It is not unusual 1o see a
designer with a card in each hand, waving them about, making a strong identifica-
tion with the objects while describing their collaboration. Ward Cunningham writes:

Classes, Responsibilities, and Collaborators cards work by taking people through pro-
gramming episodes together. As cards are written for familiar objects, all participants pick
up the same context and ready themselves for decision making. Then, by waving cards
and pointing fingers and yelling statements like, “no. this guy should do that” decisions
are made. Finally, the group stants to relax as consensus has been reached and the issue
becomes simply finding the right words to record 2 decision as & respensibility on a card.

In similar fashion other cards for the classes that have been identified earlier in
this chapter must be created, with the list of their responsibilities and their collab-
orators. As you can see from Figure 7-10, this process is iterative,

Start with few cards (classes) then proceed 1o play “what if" If the sitation
calls for a responsibility not already covered by one of the objects, either add the
responsibility to an object or create a new object to address that responsibility. If
one of the objects becomes too cluttered during this process, copy the information on

Classes by Using

FIGQURE 7-11

Classes, Respansibilities, and Collaborators for the Account objact,
Accouni Checking Accatint
ST {subclazs)
nm::: Savings Account

=il -{subc]u_s:l

deposis Transaction
withdraw
getBalance

"This section 15 adapted from "Laboraiary
Ward Cunningham, with permission of th

for Teaching Object-Oriented Thinking” by Kent Beck and

& Association for Comiputing Machinery,

472 PAAT THREE: OBJECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

BT e e SR (P e e e eyt

Real-World Issues on the Agenda

CRC: HOW DO TEAMS SHAPE OBJECTS? HOW DO OBJECTS SHAPE TEAMS?

Ward Cunningham

CRC slands for Classes, Responsibilities, and Col-
taborators. My colleagus, Kent Beck, and | would
struggle to coax a program into existence sitting
side-by-side, sharing the controls of a then new
Smalltalk workstation, We found repeatedly that our
problems would vield when we could articulate the
responsibilities of the objects we had made and the
collaborations they would use to mest those re-
sponsibilities. | had many months’ experience with
such grappling befare | ever tried ‘o duplicate the
sensalion away from a computér, The first aver CRC
Cards were written at 4:00 ay ong morning on my
dining room table. The first ever team devalopment
of CAC Cards took place around 2:00 am that same
day as Brian Wilkerson and | grappled with respon-
sipilitias at a cafetaria table 1000 feet from our ma-
chines, As with Kent many timas befors, here | was
coaxing @ program into existence. I'd like to leave
CHRC for the moment and instead focus on what |
mean by coaxing a program inlo existance,

A program is decision made. Humans make
those decisions and write them inta programs. When
| compare the research programming | did early on
to the production programming I've dane recently, |
find that the activities ditfer only in the quantity of
decisions made on a given day. In both cases deci-
sions coma in spurts. A period of Investigation pre-
cedss a spurt of decisions; Likewise, a period of
rather mechanical activity fallowing through with
consequences follows a decisiun spurl. The feeling
one gels is of lifting a problem up into the mind,
struggling with it until decisions come, then putting

thosa decisions down in place of the problem, Only
then can one relax, This cycle repeafs, I's what |
call grappling. | feel it when | program, with cards or
at a maching.

| now call these grapple cycles programming
episodes. Episodic programming is most noticeabla
when decisions require judgment. Mechanical deci-
sions, like looking something up in a book, don't feel
particularly episodic, But, then, they aran't actually
decisions. Designing framework software on the
other hand does require judgmenl and progresses
in distinct episodes.

CRC Cards work by taking people through pro-
gramming episodes together. As cards are written
far tamiliar objects, all participants pick up the same
context and ready themselves for decision making.
Then, by waving cards and pointing fingers and
yelling statements like, “no, this guy should do that,’
decisions-are made. Finally, the group starts lo re-
lax as consensus has been reached and the issue
becomes simply finding the right words to record a
decision as a responsibility on a card.

I've had pecple tell me about their struggles to
make CAC Cards work. Often many none-too-fruit-
ful sessions preceded an almost spiritual experl-
ence when the right people are finafly assembiad
and they "come together” to break a logjam of inde-
cigion.

Such reports are, of course, satislying, Even
maré satistying is my more recent experience: in
front of the Smalltalk browsers. Having left research,
| found mysel! swimming in & river of decisions. As
| pointed oul sarlier, production programming re-

its card to a new card, searching for more concise ways of saying what the object
does. If it is not possible to shrink the information further and the object i5 still too
complex, create a new object to assume some of the responsibilities.

7.8 NAMING CLASSES
Naming a class is an important activity. Here are guidelines for naming classes:

+ The class name should be singular. The class should describe a single object, so
it should be the singular form of noun (it may be an adjective and a noun, such
as YouthMember).

quires many times more decisions per day than
research, Production decisions are rarely as pro-
found as those in ressarch, but they are of equal or
greater consequence and demand as much or
more judgment. Our production team “came to-
gether” when we lsamed to work through episodes
promptly and in synchronization so that our collec-
tive esiperience came to bear on all of our decision
making,

We regularly worked two to a machine. This
worked bes! when we had enough framewark in
place that our Smalltalk code read like specification,
An episode would begin by poking around with
"senders,’ “implementers,” a few “inspectors” and
an occasional "ctrl-c” We were lifling the problem
into our collective consciousness. One would type,
the athar watch, then trade off, As we approached
decisions, our attention would turn to sach ofher,
The communication would becoms complex as hu-
man communication often does. | won't attempt to
analyze it except to say that it includes a ot of hand
- waving, body motion and statements like, “hey, that
guy shouldn't do that" Finally, decisions would be
made and the consequences followad through, not
by writing on cards, but by adjusting the specifica-
tion-lka code. And, as with cards, we would search
for just the right words to represent the decisions as
they had come to us.

What I've just deseribed, I'd felt in research, And,
| thought of it as just 2 happy compatibiiity. In pro-
duetion, our machine sharing collaborations were
fore intentional, based on our need to work quickly
and correctly. It was a practice that grew slowly in
our core group of four implementers, Individuzgils of
only average compatibiiity. The practice spread by
firsthand experience, First, others learnad that | pre-
ferred collaborative episodes as & work siyle. Then,
they chose o work that way, too. Ultimataly, any

CHAPTER 7: QBJECT ANALYSIS: CLASSIFICATION 173

BOX 7.1 {continued)
- - R

passible pairing was likely in the office and & group
of three would form when the problams required
that much talent,

I'd like to point out again the unusually high ca-
pacity human-fo-human communication path that s
opened by two people sharing a machine. As the
developers work through whole programming
episodes together, the machine presents a broad
range of situalions. to be dealt with, all, of coursa,
relevant o the work at hand. In order to stay syn-
chronized each programmar must at least follow the
problem-selving strategies and technigues of the
other. Things that worked were obvicus. These
spread quickly as did our general understanding of
what worked well and what didn't in the program as
a whole,

| now recognize the organization we built to be a
High-Performance Team. Such teams are recog-
nized by their ability to play to members' strengths
while covering for each other's weaknessas, Wa
were able 1o work at maximum productivity continu-
cusly and indefinitely. When an occasional crisis did
occur, we simply pulled the most relevant people to-
gether and worked through the problem as another
episode. We knew we ware working on the most im-
portant thing in the most productive way. Mo further
urgency was necessary,

In summary, Smalltalk’s specification-like coding
and incremental development environment parmits
a unique human-human-machine dislogue. CRC
Cards allow larger groups lo feel this dialogue which
5 based on repested opisodes of desision making.
Finalty, members of somewhat larger production de-
velopment teams can exploit the human-human-
machine dialogue on a pair-wise basis, The com-
plex communication that then takes place will Sup-
port a High-Performance organization with many
benefits, a few of which | have mentionad,

One general rule for naming classes is that you should use names with which
the users or clients are comfortable. Choose the class name from standard vo-
cabulary for the subject matter. Select the name with which the client 15 com-
fortable rather than semantically accurate terminology [3].

The name of a class should reflect its intrinsic nature. Stick with the general ter-

minology of the subject matter.

Use readable names. Capitalize class names. By convention, the class name must
begin with an upper-case letter. For compound words, capitalize the first letter
of each word; for example, LoanWindow, While these conventions are not
mandatory, they make the code consistent and easy to read, Do not add prefix

174 PuAT THREE: OBJECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

and suffix codes, they are a bother to read and troublesome when they need to
be changed [3].

7.9 SUMMARY

Object analysis is a process by which we can identify the classes that play a role
in achieving the system goals and requirements. The problem of classification may
be regarded as one of discriminating things, not between the individual objects, but
between classes via the search for features or invariant attributes (or behaviors)
among members of & class.

Finding classes is one of the hardest 4ctivities in object-oriented analysis. Un-
fortunately classes are rarely just there for the picking. There is no guch thing as
the perfect class structure or the right set of objects. Nevertheless, several ap-
proaches—such as the use-case driven approach, the noun phrase, and the knowl-
edge base of common class pattems, and Classes, Responsibilities, and Collabo-
rators—can offer us guidelines and general rules for identifying the classes in the
given problem domain. Furthermaore, identifying classes is an iterative process, and
as you gain more experience, you get better al identifying classes.

In this chapter, we studied four approaches for identifying classes: the noun
phrase, common class patterns, use-case driven. and Classes, Responsibilities, and
Collaborators, The process of identifying classes can improve gradually through
the incremental process. Some classes will be missing in the first few cycles of
:dentification, and others will be eliminated or refined later. Unless you are start-
ing with a Tot of domain knowledge, you probably will miss more classes than you
will eliminate, Your design will go through many stages on its way to completion
as you learn more about the problem.

To identify classes using the noun phrase approach, read through use cases,
looking for noun phrases, Consider nouns in the textual description to be classes
and verbs to be methods of the classes.

The second method for identifying classes is the common class patterns ap-
proach based on the knowledge base of the common classes proposed by various
researchers. These researchers compiled and listed several categories for finding
the candidate classes and objects.

The third method we studied was use-case driven. To identify objects of a sys-
tem and their behaviors, the lowest level of executable use cases is further ana-
lyzed with a sequence and collaboration diagram pair. By walking through the
steps. you can determine what objects are necessary for the steps to take place, Fi-
nally, we looked at the Classes, Responsibilities, and Collaborators, which is a
useful tool for learning about class responsibilities and identifying classes. These
approaches can be mixed for identifying the classes of a given problem.

Naming a class is an important activity, 100. The class should describe a single
object, so it should be a singular noun or an adjective and a noun. A general rule
for naming classes is that you use names with which the users or clients are com-
fortable. Choose the class names from standard vocabulary for the subject matler.

CHAPTER 7: OBJECT ANALYSIS: CLASSIFICATION 175

KEY TERMS

Adjective class (p. 155)

Attribute class (p. 135)

Classes, Responsibilities, and Collaborators (CRC) (p. 169)
Classification (p. 152)

Collaborator (p. 169)

Common class patterns (p. 162)
Concepts class (p. 162)

Events class (p. 162)

Irrelevant class (p. 155)

Organization class (p. 162)

Places class (p. 162)

People (person) class (p. 162)
Redundant class (p. 155)

Tangible things and device clags {p. 163)

REVIEW QUESTIONS

1. Where do objects come from?
2. Describe the noun phrase strategy for identifying lentative classes in a problem domain.
3. Describe refevant, fuzzy, and {relevant classes,
4. How would yvou select candidate ¢lasses for the list of relevant and fuzey classes?
5. What eriteria would your use to eliminate a class?
6. What 15 the common class pattems strategy?
7. What clues would you use 1o identify classes?
8. How would you name classes?
9. What are the concepts classes?
10. What are the events classes?
11. What are the organization classes?
12. What are the other system classes?
13, What are the peaple {person) classes?
14. Explain the places class source.
15. Whal are the tangible things and devices élasses?
16. Why is identifying classes an incremental process?
17. Why is developing a sequencefcollaboration disgram a useful activity in identifying
classes?
18. Why is Classes, Responsibilites, and Collaborators useful?

PROBLEMS

1. Develop sequence/collaboration diagrams for the Deposit Checking use case of the bank
system, _

2. Develop sequence/collaboration disgrams for the Deposit Savings use case of the bank
syslem.

3. Develop sequencefeollaboration diagrims for the Withdraw Savings Demied use case of
the bank system.

176 PART THREE CRJECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

d, Identify classes in the Grandma’s Soup Unlimited problem (see Chapter 6) by using one
[or a combination) of approaches you have leamed in this chaprer. Also, write a reason(s)
for the approach that you have selected.

REFEREMNCES

i

Anderson, Michael; and Bergstrand, John, “Formalizing Use Cases with Message Se-
quence Charts,” Master thesis, Department of Communication Systems, Lund Institute
of Technology, 1995,

Booch, Grady. Object-Oriented Analysis and Design with Applications. Redwood, CA:
Benjamin-Cummings, 1994,

. Coad, Peter; and Yourdon, Edward. Obfect-Oriented Analysis, 2d ed. Englewood Cliffs,

NI Yourdon Press, Prentice-Hall, 1991,

. Gabriel, R.; White, J.; and Bobrow, D, “CLOS Integrating Object-Oriented and Func-

tienal Programming.” Cammunications af the ACM 34, no, 9.

Harmon. P; and Watson, M. Undersianding UML: The Developer’s Guide with a Web-
Based Application in Java. San Mateo, CA: Morgan Kaufmann Publishers, 15998
Martin, James; and Odell; James. Gbrect-Oriented Analysis and Design. Englewood
Cliffs, N1, Prentice-Hall, 1992,

Object Modeling Quick Srart. Popkin Software & Systems, 1997,

Ross, R. Entiry Modeling: Technigues and Application, Boston: Database Research
Group, 1987,

Shaw, M. “Large Scale Sysiems Requine Higher-Level Abstractions” SIGSOFT Engi-
neering Notes 14, no. 3 (May 1989), p.i43.

Shlaer, §.; and Mellor, 5. Object-Orienied Svstem Analysis; Modeling the World in
Data. Englewood Cliffs, NJ: Yourdon Press, 1988,

. Tou, 1. T.; and Gonzalez, R. C. Pattern Recognition Principles. Reading, MA: Addisan-

Wesley, 1981,

Beck, Kent; and Cunhingham, Ward. "A laboratory for teaching Object-Oriented
Thinking.” Objeet-Oriented Programming System Languages and Application OOP-
SLA'E9, October 1-6, 1989, New Orleans, LA,

Wirfs-Brock, Rebecea; Wilkerson, Brian; and Wiener, Lauren. Designing Object-Orierted
Software. Englewood Cliffs, NJ: Prentice-Hall, 1992,

Identifying Object
Relationships, Attributes.
and Methods

Objects comtribute to the behavier of
the gystem by collaborating with one
anether _

—Grody Booch {2]

Chapter Objectives

You should be able to define and understand

* Analyzing relutionships among classes.

* Identifying association.

* Association patterns,

* ldentifying super- and subclass hierarchies,

* ldentifying aggregation or a-part-of compositlons,

* Class responsibilities:

* Identifying attribotes and methods by analyzing use
cases and other UML diagrams.

8.1 INTRODUCTION

In an object-oriented environment, objects take on an active role in a system, (Of
course, objects do not exist in isolation but interact with each other. Indeed, these
interactions and relationships are the application. All objects stand in relationship
1o others on whom they rely for services and control. The relationship among ob-
jects is based on the assumptions each makes about the other objects, including
what operations can be performed and what behavior resilis [2]. Three types of
relationships among objects are

* Association. How are objects associated? This information will guide us in de-
signing classes.

* Super-sub structure {also known as peneralization hierarchy). How are objects
organized into superclasses and subclasses? This information provides us the di-
rection of inheritance.

177

478 eART THREE: OBJECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

» Aggregation and a-part-of structure, What is the composition of complex classes?
This information guides us in defining mechanisms that properly manage object-
within-ohject [6].

Generally speaking, the relationships among objects are known as associarions.
For example, a customer places an order for soup. The order i the association be-
rween the customer and soup objects. The hierarchical or super-sub relation allows
the sharing of properties or inheritance. A-parf-of structure is a familiar means of
organizing components of a bigger object. For example, walls, windows, doors.
and the like are part of a bigger object: a building.

In this chapter. we look at guidelines for identifying association, super-sub, and
a-part-of relationships in the problem domain. We then proceed to identify atirib-
utes and methods. To do this we must first determine the responsibilities of the
system. We saw that the system’s responsibilities can be identified by analyzing
use cases and their sequence and collaboration diagrams. Once you have identi-
fied the system’s responsibilities and what information the system needs o re-
member, you can assign each responsibility to the class 1o which it logically be-
longs. This also aids in determining the purpose and role each class plays in the
application.

8.2 ASSOCIATIONS

Association represents a physical or conceptual connection belween two or more
objects. For example, if an object has the responsibility for telling another object
that a credit card number is valid or invalid, the two classes have an association.
In Chapter 5, we learned that the binary associations are shown as lines connect-
ing two class symbols. Ternary and higher-order associations are shown as dia-
monds connecting to a class symbol by lines, and the association name is written
above or below the line. The association name can be omitted if the relationship
is obvious. In some cases, you will want to provide names for the roles played by
the individual classes making up the relationship. The role name on the side clos-
est to each class describes the role that class plays relative to the class al the other
end of the line, and vice versa [4] (see Figure 8-1).

FIGURE 8-1
Basic association, See Chapier 5 for a detalied discussion of association,
et Association Name P
Role of A Role of B e
Parent of
John Ken

CHAFPTER & IDENTIFYING OBJECT RELATIONSHIPS, ATTRIBUTES, AND METHOD: 179

8.2.1 Ildentifying Associations

Identifying associations begins by analyzing the interactions between classes. Af-
ter all, any dependency relationship between two or more classes is an association
[7]. You must examine the responsibilities to determine dependencies. In other
words, if an object is responsible for a specific task (behavior) and lacks all the
necessary knowledge needed to perform the task, then the object must delegate the
task to another object that possesses such knowledge. Wirfs-Brock. Wilkerson, and
Wiener [8] provide the following questions that can help us to identify associations:

* Is the class capable of fulfilling the required task by itself?
* If not, what does it need?
* From what other class can it acquire what it needs?

Answering these questions helps us identify association. The approach you
should take to identify association is flexibility, First, extract all candidates’ as80-
ciations from the problem statement and get them down on paper. You can refine
them later. Notice that a-part-of structures (aggregation) and associations are Very
similar. So, how do you distinguish one from the other? It depends on the prob-
lem domain; after all, a-pant-of structure is a special case of association. Simply
pick the one most natural for the problem domain, If you can represent the prob-
lem more easily with association, then select it; otherwise, use a-part-of structure,
which is described later in the chapter,

8.2.2 Guidelines for Identifying Association
The following are general guidelines for identifying the tentative associations:

* A dependency between two or more classes may be an association. Association
often corresponds to a verb or prepositional phrase, such as part of, next to.
works for, or contained in.

* A reference from one class to another is an association. Some associations are
implicit or taken from general knowledge,

B.2.3 Common Association Patierns

The common association patterns are based on some of the common associations
defined by researchers and practioners: Rumbaugh et al. [7], Coad and Yourdon
[3], and others. These include

* Location association—next to, part of, contained in. For example, consider a
soup object, cheddar cheese is a-part-of soup. The a-part-of relation is a special
type of association, discussed in more detail later in the chapter.

* Communication association—talk to, order to. For example, a customer places
an order (communication association) with an operator person (see Figure 8-2),

These association patterns and similar ones can be stored in the repository and
added to as more patterns are discovered. However, currently, this capability of the
unified approach’s repository is more conceptual than real, but it is my hope that
CASE tool vendors in the near future will provide this capability,

180 PART THREE: OBIECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

Custoimeer Dperator

Order

FIGURE 8-2
A customer places an order (communication association) with an eperalor person.

8.2.4 Eliminate Unnecessary Associations

* Implementation associarion. Defer implementation-specific associations 1o the
design phase. Tmplementation associations are concerned with the implementa-
tion or design of the class within centain programming or development environ-
ments and not relationships among business objects (see Chapter 6 for a defini-
tion of business objects),

* Iernary associations. Ternary or n-ary asseciation is an association among more
than two classes (see Chapter 5). Ternary associations complicate the represen-
tation. When possible, restate ternary associations as binary associations.

* Directed actions (or derived) association. Directed actions (derived) associa-
tions can be defined in terms of other associations. Since they are redundant.
avoid these types of association. For example, Grandparent of can be defined in
terms of the parent of association (see Figure 8-3).

Choose association names carefully. Do not say how or why a situation came
about; say what it is. Add role names where appropriate, especially to distinguish
multiple associations. These often are discovered by testing access paths to ob-
jects,

FIGURE 8-3
Grandparent of Kan can be defined In terms of the parent association.

Grandparent of
John R 2 Ken

Parent of Parent of
John —p Brian - Ken

CHAPTER & IDENTIFYING OBJECT RELATIONSHIPS, ATTRIBUTES, AND METHODS 181

8.3 SUPER-SUB CLASS RELATIONSHIPS

The other aspect of classification (see Chapter 7) is identification of super-sub re-
lations among classes. For the most part, a class is part of a hierarchy of classes,
where the top class is the most general one and from it descend all other, more
specialized classes. The super-sub class relationship represents the inheritance re-
lationships between related classes, and the class hierarchy determines the lines of
inhéritance between classes. Class inheritance is useful for a number of reasons,
For example, in some cases, you want to create 4 number of classes that are sim-
ilar in all but a few characteristics. In other cases, someone already has developed
a class that you can use, but you need to modify that class. Subclasses are more
specialized versions of their superclasses. The classes are nol ordered this way for
convenience’s sake.

Superclass-subelass relationships, also known as generalization hierarchy, al-
low objects to be built from other objects. Such relationships allow us to explic-
itly take advantage of the commonality of objects when constructing new classes.
The super-sub clags hierarchy is a relationship between classes, where one class is
the parent class of anather (derived) class. Recall from Chapter 2 that the parent
class also is known as the base or super class or ancestor, The super-sub class hi-
erarchy is based on inheritance, which is programming by extension as opposed to
programming by reinvention [5]. The real advantage of using this technigue is that
we can build on what we already have and, more important, reuse what we already
have. Inheritance allows classes to share and reuse behaviors and attributes. Where
the behavior of a class instance is defined in that class's methods, a class also in-
herits the behaviors and attributes of all of its superclasses. Now let us take a look
- at guidelines for identifying classes.

8.3.1 Guidelines for Identifying Super-Sub Relationship, a
Generalization

The following are guidelines for identifyving super-sub relationships in the appli-
cation:

*“Top-down. Look for noun phrases composed of various adjectives in a class
Rame. Often. you can discover additional special cases, Avoid excessive refine-
ment, Specialize only when the suhclasses have significant behavior. For exam-
ple, a phone opérator employee can be represented as a cook as well as a clerk
or manager because they all have similar behaviors.

* Bonom-up. Look for classes with similar anribules or methods. In most cases,
you can group them by moving the common attributes and. methods (o an ab- -
stract class, You may have to alter the definitions a hit; this is acceptable as long
as generalization truly applies. However, do not force classes to fit a precon-
ceived generalization structure.

* Reusabiliry. Move attributes and behaviors (methods) as high as possible in the
hierarchy, Al the same time, do not create very specialized classes at the top of
the hierarchy. This is easier said than done. The balancing act can be achieved
through several iterations. This process ensures that you design objects that can
be reused in another application,

182 puaT THREE: OBJECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

Multiple
inhentance
Single f
inheritance Aggregation

FIGURE B8-4

One way to achieve the benelits of multiple Inheritance is to inherit from the mast appropriale
class and add an object of ancther class as an afirlbute. [n essence, a multiple inherilance can
be represented as an aggregation of a single nhartance and aggregation, This meta-model re-
flects this situation.

« Multiple inheritance. Avoid excessive use of multiple inheritance. Multiple in-
heritance brings with it complications such as how to determine which behavior
to get from which class, particularly when several ancestors define the same
method. It also is more difficult to understand programs written in a multiple in-
heritance system. One way of achieving the benefits of multiple inheritance is
to inherit from the most appropriate class and add an object of another class as
an attribute (see Figure 8—4, aggregation; we will look at this issue in Chapter
9). However, use multiple inheritance when it is appropriate. For example, if the
owner of a restaurant prepares the soups. you can utilize multiple inheritance
structure to define an OwnerOperator class that inherits its attributes and meth-
ods from both the Owner and Operator classes.

8.4 A-PART-OF RELATIONSHIPS—AGGREGATION

A-part-of relationship, also called aggregafion, represents the sitpation where a
class consists of several component classes. A class that is composed of other
classes does not behave like its parts; actually, it behaves very differently, For ex-
ample, a car consists of many other classes, one of which is a radio, but a car does
not behave like a radio (see Figure 8-3).

Two major properties of a-part-of relationship are transitivity and antisymme-
wy [7:

» Transitivity. The property where, if A is part of B and B is part of C, then A is
part of €. For example, a carburetor is part of an engine and an engine is part of
a car: therefore, a carburetor is part of a car. Figure 6-3 shows a-part-of structure.

« Antisymmetry. The property of a-part-of relation where, if A is part of B, then
B is not part of A. For example, an engine is part of a car, but a car is not part
of an engine,

A clear distinction between the part and the whole can help us determine where
responsibilities for certain behavior must reside. This is done mainly by asking the
following questions [3]:

CHAPTER 8: IDENTIFYING OBJECT RELATIONSHIPS, ATTRIBUTES, AND METHODS 183

Car
i
Engine Radio
[
Carburetar

FIGURE 8-5
A-part-of composition. A carburetor iz a part of an engine and an engine and a radio are paris
of a car,

* Does the part class belong to a problem domain?

= Is the part class within the system’s responsibilities?

* Does the part class capture more than a single value? (I it captures only a sin-
gle value, then simply include it as an attribute with the whole class.)

* Does it provide a useful abstraction in dealing with the problem domain?

In Chapter 5, we saw that the UML uses hollow or filled diamonds to represent
aggregations. A filled diamond signifies the strong form of aggregation, which is
composition. For example, one might represent aggregation such as container and
collection as hollow diamonds (see Figures 8—6 and 8-7) and use a solid diamond
to represent composition, which is a strong form of aggregation (see Figure 8-5),

8.4.1 A-Part-of Relationship Patterns

To identify a-part-of structures, Coad and Yourdon [3] provide the following guide-
lines:

* Assembly. An assembly is constructed from its parts and an assembly-part situ-
ation physically exists; for example, a French onion soup is an assembly of
onion, butter, flour, wine, French bread, cheddar cheese, and so on.

* Container. A physical whole encompasses but is not constructed from physical
parts; for example, a house can be considered as a container for furniture and
appliances (see Figure 8-6),

FIGURE B8-6
A house s & container.

House

Fumniture- | | Appliances

184 PaRT THREE: OBJECT-ORIENTED ANALYSIS: USE-GASE DRIVEN

Football Team

Player

FIGURE B-7
A football team is a collection of players.

* Collection-member. A conceptual whole encompasses parts that may be physi-
cal or conceptual; for example, a football team is a collection of players (see
Figure 8-7).

8.5 CASE STUDY: RELATIONSHIP ANALYSIS FOR THE VIANET
BANK ATM SYSTEM

To better gain experience in object relationship analysis, we use the familiar bank
system case and apply the concepts in this chapter for identifying associations, super-
sub relationships, and a-part-of relationships for the classes identified in Chapter 7.

As explained before, we must start by reading the requirement specification,
which is presented here. Furthermore, object-oriented analysis and design are per-
formed in an iterative process using class diagrams. Analysis is performed on a
piece of the system, design details are added to this partial analysis model, and
then the design is implemented. Changes can be made to the implementation and
brought back into the analysis model to continue the ¢ycle. This iterative process
i5 unlike the raditional waterfall technigue, in which all analysis is completed be-
fore design begins.

B.5.1 Identifying Classes' Relationships

One of the strengths of object-oriented analysis is the ability to model objects as
they exist in the real world. To accurately do this, you must be able io model more
than just an object’s internal workings. You also musi be able o model how ob-
jects relate to each other. Several different relationships exist in the ViaNet bank
ATM system, so we need 1o define them.

B.5.2 Developing a UML Class Diagram Based on the Use-Case
Analysis

The UML class diagram is the main static analysis and design diagram of a sys-
tem. The analysis generally consists of the following class diagrams

* One class diagram for the system, which shows the identity and definition of
classes in the system, their interrelationships, and vanious packages containing
groupings of classes.

CHAPTER &: IDENTIFYING OBJECT RELATIONSHIPS, ATTRIBUTES, AND METHODS 1 85

Bank
BankClient ATMMachine
Account Transaction
Checking Account SuvingsAccouml

FIGURE 8-8

UML class diagram for the ViaNet bank ATM system. Some CASE tools such as the SA/Object
Architect can automaticafly define classes and draw them from use cases or collaboration’
sequence diagrams. However, presanily, it cannol identify all the classes. For this example,
S/a Object was able 1o identify only the BankClient class.

* Multiple class diagrams that represent various pieces, or views, of the system
class diagram.

* Multiple class diagrams, that show the specific static relationships between var-
ious classes.

First, we need to create the classes that have been identified in the previous
chapter; we will add relationships later (see Figure 8—8).

8.5.3 Defining Association Relationships

Identifying association begins by analyzing the interactions of each class. Re-
member that any dependency between two or more classes is an association. The
following are general guidelines for identifying the tentative associalions, as ex-
plained in this chapter:

* Association often corresponds to verb or prepositional phrases, such as part of;
nexr to, works for, or contained in,

* A reference from one class to another is an association. Some associations are
implicit or taken from general knowledge.

Some common patterns of associations are these:

* Location association. For example, next 1o, part of, contained in (notice that a-
part-of relation is a special type of association).

» Directed actions association.

* Communication association. For example, talk to, order from,

The first obvious relation is that each1nccuunl belongs to a bank client since
each BankClient has an account. Therefore, theré is an association between the
BankClient and Account classes. We need to establish cardinality among these

186 PART THREE: OBJECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

BankClient

Account

Has

1.2

FIGURE 8-9
Defining the BankGlient-Account association multiphicity. One Client can have one or more Ac-
eounts {chiecking and savings accounts).

classes. By default, in most CASE tools such as SA/Object Architect, all associa-
tions are considered one to one (one client can have only one account and vice
versa). However, since each BankClient can have one or two accounts (see Chap-
ter 6), we need to change the cardinality of the association (see Figure 8-9). Other
associations and their cardinalities are defined in Table 81 and demonstrated in
Figure 810,

8.5.4 Defining Super-Sub Relationships
Let us review the guidelines for identifying super-sub relationships:

+ Top-dawn. Look far noun phrases composed of various adjectives in the class
name.

» Bottom-up, Look for classes with similar attributes or methods. In most cases,
you can group them by moving the common attributes and methods to an ab-
stract class.

* Reusability, Move attributes and behaviors (methods) as high as possible in the
hierarchy.

= Multiple inheritance. Avoid éxcessive use of multiple inheritance.

CheckingAccount and SavingsAccount both are types of accounts. They can be
defined as specializations of the Account class, When implemented, the Account

SOME ASSOCIATIONS AND THEIR CARDINALITIES IN THE BANK SYSTEM

Class Related class Association name Cardinality
Accournt BankGliem Has One
BankClient Account One or two
SavingsAccount Checkingaccount Savings-Checking Ong
CheckingAccount SavingsAccount Zero or ona
Account Transaction Account-Transaction Zero of more

Transaction Account Crng

CHAFTER 8: IDENTIFYING OBJECT RELATIONSHIPS, ATTRIBUTES, AND METHODE 187

Bank
BankCisent ATMMachine
|
Hus Account Aceount-Transaction Trunsaction
I,2 |
CheckingAccoum | Saidnigr Checking Savings Accotnt
1
FIGURE B-10

Associations among the Viakis! bank ATM system classes.

class will define attributes and services common 1o all kinds of accounts, with
CheckingAccount and SavingsAccount each defining methods that make them
more specialized. Figure 8-11 depicts the super-sub relationships among Ac-
counts, SavingsAccount, and Checking Account.

8.5.5 ldentifying the Aggregation/a-Part-of Relationship
To identify a-part-of structures, we look for the following clues:

* Assembiy. A physical whole is constructed from physical pants.

* Conmtainer. A physical whole encompasses but is not constructed from physical
parts.

* Collection-Member. A conceptual whole encompasses parts that may be physi-
cal or conceptual.

FIGURE 8-11
Super-sub relationships among the Account, SavingsAccount, and CheckingAccount classes.
Bank
BankClien ATMMaching
|
Hayx Accoint Account-Transaciion Transaction
I.2 I
[
[I
CheckingAccoum i Savings-Checking SavingsAccount
I

1BB PuRT THREE OBIECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

Bank
i]
Has BankCliem h ATMMachine
-
1.2 L
A0 o Acconni-Truvisacion Transaction
1
5 :
CheckingAtcount) Savings-Checking SavingsAccount
1
FIGURE B8-12

Association, generalization, and aggredation among the ViaMel bank classes. Nolice that the su-
per-sub arows for CheckingAccount and SavingsAccount have merged, The relafionship be-
tween BankClignt and ATMMachine is an interace,

A bank consists of ATM machines, accounts, buildings, employees, and so forth.
However, since buildings and employees are outside the domain of this applica-
tion, we define the Bank class as an aggregation of ATMMachine and Account
classes. Appregation is a special type of association, Figure B—12 depicts the as-
sociation, generalization, and aggregation among the bank systems classes. If you
are wondering what is the relationship between the BankClient and ATMMachine,
it is an interface, 1dentifying a class interface is a design activity of object-oriented
system development; we look at defining the interface relationship in Chapter 12.

8.6 CLASS RESPONSIBILITY: IDENTIFYING ATTRIBUTES
AND METHODS

Identifying attributes and methods is like finding classes, still a difficult activity
and an iterative process. Once again use cases and other UML diagrams will be
pur guide for identifying attributes, methods, and relationships among classes.

Responsibilities identify problems to be solved, Beck and Cunningham explain
this point elegantly [1, p. 2], “A responsibility serves as a handle for discussing
potential solutions. The responsibilities of an object are expressed by a handful of
short verb phrases, each containing an active verb. The more that can be expressed
by these phrases, the more powerful and concise the design.”

Attributes are things an object must remember such as color, cost, and manu-
facturer. Identifying attributes of a system’s classes starts with understanding the
system’s responsibilities. We saw that a system's responsibilities can be identified
by developing use cases and the desired characteristics of the applications, such as
determining what information users need from the sysiem.

The following questions help in identifying the responsibilities of classes and
deciding what data eléements to keep wrack of [8]:

CHAPTERA 8: IDENTIFYING OBJECT RELATIONSHIPS, ATTRIBUTES, AND METHODS 189

* What information about an object should we keep track of? L
* What services must a class provide? /

Answering the first question will help us identify attributes of a class. Answer-
ing the second question allows us to identify a class’s methods. Wirfs-Brock, Wil-
kerson, and Wiener describe system responsibility thus:

Responsibilities are meant to convey a sense of the purpose of an object and us place
in the system. The responsibilities of an object are all the services it provides for all the
contracts it supports. When you assign responsibilities to a class, you are stating that
each and every instance of that class will have those rﬁpunmb:htms whether there is
just one instance or many. [8, p. 62]

In the following sections, we look at guidelines for identifying attributes and
methods of classes in the problem domain by analyzing use cases. Furthermore,
developing other UML diagrams such as UML activity and state diagrams also can
assist in this process by helping us better understand classes’ responsibilities.

8.7 CLASS RESPONSIBILITY: DEFINING ATTRIBUTES BY
AMNALYZING USE CASES AND OTHER UML DIAGRAMS

Attributes can be derived from scenario testing; therefore, by analyzing the use
cases and sequence/collaboration, activity, and state di state diagrams, you can begin to
understand classes’ responsibilities and how they must interact o perform their
tasks. The main goal here is to understand what the class is responsible for know-
ing. Responsibility is the key issue. Imagine yourself as an object in an object-
oriented environment;, what kind of questions would you like to ask [3]?

How am 1 going to be used?

How am | going to collaborate with other classes?

How am | described in the context of this system's responsibility?
What do [need to know?

What state information do I need to remember over time?

* What states can | be in?

Using previous object-oriented analysis results or analysis patterns (if these are
available) can be extremely useful in finding out what attributes can be reused di-
rectly and what lessons can be learned for defining attributes |3). Furthermore, you
can Start o extrapolate which classes you will have to build and which existing
classes you can reuse. As you do this, you also begin thinking about the inheri-
tance structure. If you have several classes that seem related but have specific dif-
ferences, you probably wani to make them common subclasses of an existing class
or one that you define, Often, bottom up, the superclasses are generated while cod-
ing, as you realize that common characteristics can be factored out or in.

8.7.1 Guidelines for Defining Attributes
Here are goidelines for identifying attributes of classes in use cases:

+ Attributes usually comespond to nouns followed by prepositional phrases such
as cost of the soup. Autributes also may correspond o adjectives or adverbs,

490 eaRT THREE: OBJECT-ORIENTED ANALYSIS: USE-CASE DAIVEN

+ Keep the class simple; state only enough attributes to define the object state.

« Attributes are less likely to be fully described in the problem statement. You
must draw on your knowledge of the application domain and the real world 1o
find them.

« Omit derived attributes, For example, do not use fime elapsed since order. This can
he derived from time of the order. Derived attributes should be expressed as a
method.

« Do not carry discovery af attributes to excess. You can add more attributes in
subsequent iterations.

Another point to remember is that you may think of many attributes that can be
associated with a class, You must be careful to add only those attributes necessary
to the design at hand. Let use cases guide you in this process. For example, your
initial thought is that the library Member class may have attributes such as Name,
Social Security Number, Age, and Weight. The attributes Age and Weight may be
important to the class Member in a personal system, but it is not within the scope
of the system since there is no scenario in Library Borrow Books that requires or
needs to keep track of the Age and Weight of the member,

8.8 DEFINING ATTRIBUTES FOR VIANET BANK OBJECTS
In this section, we go through the bank system classes and define their attributes.

8.8.1 Defining Attributes for the BankClient Class

By analyzing the use cases, the sequence/collaboration diagrams (see Chapter 7)
and the activity diagram (see Chapter 6), it is apparent that, for the BankClient
class, the problem domain and system dictate certain attributes. In essence, what
does the system need to know about the BankClient?

By looking at the activity diagram (see Figure 6-9) we notice that the BankClient
must have a PIN number (or password) and Card number. Therefore, the PIN num-
ber and cardNumber are appropriate attributes for the BankClient. Let's now take
a look at the use cases in Chapter 6 (Figures 6-9, 610, and 6-11) and Chapter
7. section 7.6. Other attributes of the BankClient class are drawn from our general
knowledge of a BankClient. This usually is the case for defining attributes. The at-
tributes of the BankClient are

firstName

lastMame

pinNumber

cardNumber

account: Account
At this stage of the design we are concerned with the functionality of the BankClient
object and not with implementation attributes.
8.8.2 Defining Attributes for the Account Class

Similarly, what information dogs the system need to know about an account?
Based on the use cases in Chapter 6 (see Figures 6-9, 6-10, and 6-11) and the

CHAFTER 8; IDENTIFYING OBJECT RELATIONSHIPS, ATTRIBUTES, AND METHOOS 191

sequence/collaboration diagrams in Chapter 7 (see section 7.6 and Figures 7-4,
T-3, 7-6,7-7, and 7-8), BankClient can interact with its account by entering the
account number and then could deposit money, get an account history, or get the
balance, Therefore, we have defined the following attributes for the Account class:

number
balance

8.8.3 Defining Attributes for the Transaction Class

The Transaction class, for the most part, must keep track of the time and amount
of a transaction. Here are the attributes for the Transaction class:

transiD
transDate
trans Time

transType
amount

postBalance

8.8.4 Defining Attributes for the ATMMachine Class

Recall from Chapter 7 that the ATMMachine class was identified as part of the
common class pattern (Tangible Things and Devices), which are phygical objects
or groups of objects that are tangible and with which the application inleracis.
Therefore, most attributes for this class describe its physical location and its state.
The ATMMachine class could have the following attributes:

address
stafe

8.9 OBJECT RESPONSIBILITY: METHODS AND MESSAGES

Objects not only describe abstract data but also must provide some services, Meth-
ods and messages are the workhorses of object-oriented systems. In an object-ori-
ented environment, every piece of data, or object, is surrounded by a rich set of
routines called methods. These methods do everything fromi printing the object to
initializing iis variables,

Every class is responsible for storing certain information from the domain
knowledge. It also 1s logical to assign the responsibility for performing any oper-
ation necessary on that information. By the same token, if an object requires cer-
tain information to perform some operation for which it is responsible, it is logi-
cal to assign it the responsibility for maintaining the information [8].

Operations (methods or behavior) in the object-oriented system usually corre-
spond to queries about attributes (and sometimes association) of the objects [7]. In
other words, methods are responsible for managing the value of attributes such as
query, updating, reading, and writing; for example, an operation like getBalance,
which can return the value of an account’s balance. In the same fashion, we need

492 EiRT THREE: OBJECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

a set of operations that can maintain or change values: for example, an operation
like setBalance to set the value of the balance.

In this section, we learn how to define methods based on the UML diagrams;
such as statechart, activity, and sequence/collaboration diagrams and use cases.

8.9.1 Defining Methods by Analyzing UML Diagrams and Use
Cases

In Chapter 7, we learned that, in a sequence diagram, the objects involved are
drawn on the diagram as vertical dashed lines. Furthermore, the events that occur
hetween objects are drawn between the vertical object lines. An event i5 consid-
ered o be an action that transmits information. In other waords, these actions are
operations that the objects must perform and. as in the attributes, methods also can
be derived from scenario testing,

For example; to define methods for the Account class, we look at sequence
diagrams for the followings use cases (see Chapter T):

Deposit Checking

Deposit Savings

Withdraw Checking

Withdraw More from Checking
Withdraw Savings

Withdraw Savings Denied
Checking Transaction History
Savings Transaction History

Sequence diagrams can assist us in defining the services the objects musl pro-
vide. For example, by studying the sequence diagram for Withdraw Checking (see
Figure 7-5), it is clear that the Account class {which is the superclass of
CheckingAccount and SavingsAccount) must provide a service such as with-
drawal. By analyzing the use cases, such as the one in Figure 611, it is apparent
that Aceount class should provide the deposit operation. These behaviors are de-
fined as services of the classes in the business model. Ultimately, these services
are implemented as the methods for your ohjects.

8.10 DEFINING METHODS FOR VIANET BANK OBJECTS
Operations (methods or behavior) in the abject-oriented system usually correspond

to events or actions that transmit information in the sequence diagram or queries
about attributes (and sometimes associations) of the objects [7). In other words,
methods are responsible for managing the value of attributes such as query. up-

dating, reading, and writing.

8.10.1 Defining Account Class Operations

Deposit and withdrawal operations are available to the Client through the bank ap-
plication, but they are provided as services by the Account class, since the account
objects must be able to manipulate their internal attributes (that is, modify the bal-

CHAPTER 8: IDENTIFYING OBJECT RELATIONSHIPS, ATTRIBUTES, AND METHODS 193

ance based on the transaction). Account objects also must be able 10 create trans-
action records of any deposit or withdrawal they perform.
Here are the methods that we need to define for the Account class:

deposit

withdraw

createTransaction

The services added to the Account class are those that apply to all subclasses
of Account; namely, CheckingAccount and SavingsAccount. The subclass will ei-
ther inherit these generic services without change or enhance them to suit their

own needs. For example. we will override the withdraw method of the CheckingAc-
count class.

8.10.2 Defining BankClient Class Operations

Analyzing the sequence diagram in Figure 7-4, it is apparent that the BankClient
requires a method to validate clients” passwords (see Figure 8-13).

8.10.3 Defining CheckingAccount Class Operations

The requirement specification states that, when a checking account has insufficient
funds to cover a withdrawal, it must try to withdraw the insufficient amount from

FIGURE 8-13
A maore compiate UML class diagram of the ViaMe! bank ATM systam,
Bank
o
_)
BankClient ATMBachine
T T R) LISTE R e e
lastMame m:?::s
curdNumber
piniNuinher
+verifyPassword()
Has] i Account Transaction
number translD
- balance transDiate
1.2 +depositl) : Account-Transaction transTime
+urithdrawi} transType
creule Transactioni] 1 AT
postBalanice
[1
CheckingAccount i Savingr-Checking SavingsAcoount
SAVITIES T ACoount ; checking
+evithidrrwt)

194 pFarT THREE: OBJECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

its related savings account. To provide the service, the CheckingAccount class
needs a withdrawal service that enables the transfer. Similarly, we must add the
withdrawal service to the CheckingAccount class. The withdrawal service appears
in the CheckingAccount class symbol (see Figure 8-13).

8.11 SUMMARY

The chapter describes the gnidelines for identifying object relationships, attributes,
and methods. Identifying relationships among objects is important since these
interactions and relationships become the application. We look at three types of
relationships: association, super-sub structure (generalization hierarchy), and ag-
gregation or a-part-of relations.

Association is a relationship among classes. The hierarchical relation allows the
sharing of properties or inheritance. The a-part-of structure provides the means (o
organize components of a bigger object.

To identify associations, begin by analyzing the interactions of each class and
responsibilities for dependencies. Look for a dependency between two or more
classes: it is a hint that an association exists, Associations often comrespond to verb
or prepositional phrases, such as part of, next to, works for, or contained in. Fur-
thermore, a reference from one class to another is an association, Some associa-
tions are implicit or taken from general knowledge. Some common associations
patterns are next fo, part of, and comtained in a relation; directed actions and com-
munication associations include rafk 1o or order from.

To identify super-sub relationships in the application, look for noun phrases
composed of various adjectives in the class name in top-down analysis. Specialize
only when the subclasses have significant behavior. In bottom-up analysis, look for
classes with similar attributes or methods. Group the classes by moving those
classes with common attributes and methods as high as possible in the hierarchy.
Al the same time, do not create very specialized classes at the top of the hierar-
chy. This balancing aet can be-achieved through several iterations. The process en-
sures that you design objects that can be reused in another application. Finally,
avoid excessive use of multiple inheritance, It is more difficult to understand pro-
grams written in a multiple inkeritance system. One way of achieving the benefits
of multiple inheritance is to inherit from the most appropriate class and add an ob-
Jject of another class as an attribute.

The a-part-of relationship, sometimes called aggregation. represents a situation
where a class comprises several component classes. A class composed of other
classes does not behave like its parts but very differently. For example, a car con-
sists of many other classes, one of which is a radio, but a car does not behave like
a radio. Some common aggregation/a-part-of patterns are assembly, container, and
collection-member. The a-part-of structure is a special form of association, and
similarly, association can be represented by the a-pari-of relation,

Identifying attributes and methods is like finding classes, a difficult activity and
an iterative process. Once again, the use cases and other UML. diagrams will be a
guide for identifying attributes, methods, and relationships among classes.

CHAPTER 8: IDENTIFYING OBJECT RELATIONSHIPS, ATTRIBUTES, AND METHODS 195

Methods and messages are the workhorses of object-oriented systems. The se-
guence diagrams can assist us in defining services that the objects must provide.
An event is considered to be an action that transmits information; therefare, these
actions are operations that the objects must perform. Additionally, operations
(methods or behavior) in the object-oriented system usually correspond to queries
about attributes and associations of the objects. Therefore, methods are responsible
for managing the value of attributes such as query, updating, reading, and writing.

KEY TERMS

Aggrepation (p. 182)

Antisymmeiry (p. 182)

A-part-of relation (p. 182)

Assembly (p. 183)

Association (p. 178)
Collection-member (p. 184)
Container (p. 183)

Directed actions associations (p. 180)
Ternary association (p. 180)
Transitivity (p. 182)

REVIEW QUESTIONS

L. Why is identifying class hierarchy important in object-oriented analysis?
2. 'What is association?
3. What is generalization?
4. How would you identify a super-subclass structure?
5. What is an a-part-of structure? What are major properties of an a-part-of structure?
6. What guidelines would you use to identify a-part-of structures?
7. Is assoctation different from an a-part-of relation?
B. What are some common associations?
9. What are unnecessary associations? How would you know?
10: Why do we need to identify the system’s responsibilities?
11, How would you ideniify attributes?
12. How would you identify methods?
13. What are unnecessary attributes?
14. What does repenting attributes indicate?
15. Why dio we need o justify classes with one antribute?

PROBLEMS

1. Do a literatore search on object-onented analysis patterns and write & report based an
your findings.

2. See the details regarding Grandma’s Soups Unlimited in Chapter 6.
A, Identify a super-subclass relationship by following the guidelines for generalization,
b. Identify an a-part-of structure by following the guidelines for an a-part-of struciure,

496 PART THREE: ORJECT-ORIENTED ANALYSIS: USE-CASE DRIVEN

¢, Identify association for the classes in the problem by following the guidelines for iden-

tifying relationships and methods.

d. Tdentify attributes and attributes for the classes in the Grandma's Soups Unlimited

problem, by following the guidelines for identifying methods and attributes,

3. ldentify some of the anributes and methods in Grandma's Soups Unlimited (see Chap-

ter 6},

REFEREMNCES

Beck, Kent; and Cunningham, Ward. "A Laboratory for Teaching Object-Ori-
ented Thinking," Object-Oriented Programming System Languages and Application.
OOPSLA’R9, October 1-6, 1989, New Orleans, LA.

. Booch, Grady. Objecr-Oriented Analysis and Design with Applications. Menlo Park,

CA: Benjamin-Cummings. 1994,

. Coad, P: and Yourdon, E. Object-Oriented Design. Englewood Cliffs, WJ: Yourdon

Press, 1991.

. Harmon, P and Watson, M. Understanding UML: The Developer's Guide with a Web-

Based Application in Java. Menlo Park, CA: Morgan Kaufmann Publishers, 1998,

. LaLonde, Wilf; and Pugh, John. SmallTalk V- Practice and Experience with a Digk. En-

glewood Chffs, MJ: Prentice-Hall, 1994

. Martin, James: and Odell, James. Object-Oriented Analysis and Design. Englewood

Cliffs, NJ: Prentice-Hall, 1992,

. Rumbaugh, James; Blaha, Michael; Premerlani, William; Eddy, Fredenck; and Loren-

son, William. Object-Oriented Modeling and Design. Englewood Chiffs, NI: Prentice-
Hall, 1991.

. Wirfs-Brock, Rebecca; Wilkerson, Brian; and Wiener, Lauren, Designing Object-Ori-

emted Safrware. Englewood Cliffs, NJ: Prentice-Hall, 1992.

OBJECT-ORIENTED
DESIGN

Duﬁng the design phase, we must elevate the model into actual objects that
can perform the required task. There is a shift in emphasis from the appli-
cation domain to implementation. The classes identified during analysis
provide us a framework for the design phase. In this part, we discuss busi-
ness, view, and access layers classes. The part consists of Chapters 9, 10,
11, and 12.

197

CHAPTER 9o

The Object-Oriented Design
Process and Design Axioms

Chapter Objectives

You should be able to define and understand

* The objeci-oriented design process,

* Object-oriented design axioms and corollaries.
* Design pattemns,

9.1 INTRODUCTION

It was explained in previous chapters that the main focus of the analysis phase of
software development is on “what needs to be done.” The objects discovered dur-
ing analysis can serve as the framework for design [9]. The class's attributes, meth-
ods, and associations identified during analysis must be designed for implementa-
tion as a data fype ¢ expressed in the implementation language. New classes must
be introduced to store intermediate results during program execution. Emphasis
shifts from the application domain to implementation and computer concepts such
as user interfaces or view layer and access layer (see Figures 1-11 and 4—11).

During the analysis, we look at the physical entities or business objects in the

system; that is, who the players are and how they cooperate to do the work of the
application. These objects represent tangible elements of the business. As we saw
in Chapter 7. these objects could be individuals, organizations, machines, or what-
ever else makes sense in the context of the real-world system. During the design
phase, we elevate the model into logical entities, some of which might relate more
to the computer domain (such as user interfaces or the access layer) than the real-
world or the physical domain (such as people or employees). This is where we be-
gin thinking about how to actually implement the problem in a program, The goal

here is to design the classes that we need to implement the system. Fortunately,

200 raRT FOUR: OBJECT-ORIENTED DESIGH

the design model does not look terribly different from the analysis model. The dif-
ference is that, at this level, we focus on the view and access classes, such as how
to maintain information or the best way to interact with a user or present infor-
mation. It also is useful, at this stage, to have a good understanding of the classes
in a development environment that we are using to enforce reusability.

In software development, it is tempting not to be concerned with design. After
all, you (the designer) are so involved with the system that it might be difficult 1o
stop and think about the consequences of each design choice. However, the time
spent on design has a great impact on the overall success of the sofiware devel-
opment project. A large payoff is associated with creating a good design "up
front.” before writing a single line of code. While this is true of all programming,
classes and objects underscore the approach even more. Good design usually sim-
plifies the implementation and maintenance of a project.

In this chapter. we look at the object-oriented design process and axioms. The
basic goal of the axiomatic approach is to formalize the design process and assist
in establishing a scientific foundation for the object-oriented design process, to
provide a fundamental basis for the creation of systems. Without scientific princi-
ples, the design field never will be systematized and so will remain a subject dif-
ficult to comprehend, codify, teach, and practice [10].

9.2 THE OBJECT-ORIENTED DESIGN PROCESS

During the design phase the classes identified in object-oriented analysis must be
revisited with-a shift in focus to their implementation. New classes or attributes
and methods must be added for implementation purposes and user interfaces.

The object-oniented design process consists of the following activities (see Fig-
ure 9-1):

1. Apply design axioms to design classes, their attributes, methods, associations,

structures, and protocols (Chapter 10).

1.1. Refine and complete the static UML class diagram by adding details to the
UML class diagram. This step consists of the following activities:

1.1.1. Refine anributes.

1.1.2. Design methods and protocols by utihzing & UML activity diagram
1o represent the methed’s algonthm.

1.1.3. Refine associations between classes (if required),

1.1.4. Refine class hierarchy and design with inheritance (if required).

L.2. lterate and refine again.

2. Design the access layer (Chapter 11).

2.1. Create mirror classes. For every business class identified and created, cre-
ate one access class, For example, if there are three business classes
{Class!, Class2, and Class3), create three access layer classes (Class1DB,
Class2DB. and Class3DB).

2.2, Identifv access laver class relationships.

CHAPTER g THE DBJECT-ORIENTED DESIGN PROCESS AND DESIGN Axioms 201

00 Design
| [[| [
EXI10ITR
m"?;lml::tﬂd Refine UML s st baned o
Sisicint e [i —— pototype (] s eased

Continue festing

FIGURE 9-1
The abject-ariented design process in the unified approach.

2.3. Simplify classes and their relationships. The main goal here is to eliminate
redundant classes and structures.

2.3.1. Redundant classes: Do not keep two classes that perform similar
translate request and translate reswits activities. Simply select one
and eliminate the other,

2.3.2. Method classes: Revigit the classes that consist of only one or two
methods to see if they can be eliminated or combined with existing
classes. '

2.4. Iterate and refine again.

3. Design the view layer classes (Chapter 12).
3.1. Design the macro level user interface, identifying view layer objects,
3.2. Design the micro level user interface, which includes these activities:

3.2.1. Design the view layer objects by applying the design axioms and
corollaries.

3.22. Build a prototype of the view layer interface.

3.3. Test usability and user satisfaction (Chapters 13 and 14).
3.4. lterate and refine.

4. Iterate and refine the whole design. Reapply the design axioms and, if needed,
repeat the preceding steps.

Utilizing an incremental approach such as the UA, all stages of software de-
velopment (analysis, modeling, designing, and implementation or programming)
can be performed incrementally, Therefore, all the right decisions need not be
made up front.

From the UML class diagram, you can begin (o extrapolate which classes you
will have to build and which existing classes you can reuse. A% you do this, also
begin thinking about the inheritance structure. If you have several classes that
seem related but have specific differences, you probably will want to make them

202 FART FOUR: OBIECT-ORIENTED DESIGH

common subclasses of an existing class or one that you define. Often, superclasses
are generated while coding, as you realize that common characteristics can be fac-
tored out or in. Good object-oriented design is very iterative. As long as you think
in terms of class of objects, leam what already is there, and are willing to experni-
ment, you soon will feel comfortable with the process.

Design also must be traceable across requirements, analysis, design, code, and
testing. There must be a clear step-by-step approach to the design from the re-
quirements model. All the designed components must directly trace back to the
user requirements. Usage scenarios can serve as test cases to be used during sys-
tem testing (see Figure 1-1).

9.3 OBJECT-ORIENTED DESIGN AXIOMS

By definition, an axiom is a fundamental truth that always is observed to be valid
and for which there is no counterexample or exception. Suh explains that axioms
may be hypothesized from a large number of observations by noting the common
phenomena shared by all cases; they cannot be proven or derived, but they can be
invalidated by counterexamples or exceptions. A theorem is a proposition that may
not be self-evident but ¢can be proven from accepted axioms. It, therefore, is equiv-
alent to a law or pnnciple. Consequently, a theorem is valid if its referent axioms
and deductive steps are valid. A eorollary is a proposition that follows from an ax-
iom or another proposition that has been proven. Again, a corollary is shown to be
valid or not valid in the same manner as a theorem [10].

The author has applied Suh’s design axioms to object-oriented design. Axiom
1 deals with relationships between system components (such as classes, require-
ments, and software components), and Axiom 2 deals with the cumpiexlty of de-
sign.

« Axiom |. The independence axiom. Maintain the independence of compaonents.
« Axiom 2. The information axiom. Minimize the information content of the de-

sign. [4 |

Axiom | states that, during the design process, as we go from requirement and
use case to a system component, each component must satisfy that requirement
without affecting other requirements. To make this pmnl clear, lcl s take a look at
there are two requirements: The dnur should Prﬂ‘-’ldﬂ access to food, and the r_nerg}'
lost should be minimal when the door is opened and closed. In other words, open-
ing the door should be independent of losing energy. Is the vertically hung door a
good design? We see that vertically hung door violates Axiom |, because the two
specific requirements (i.e., access to the food and minimal energy loss) are coupled
and are not independent in the proposed design. When, for example, the door is
apened to take out milk, cold air in the refrigerator escapes and warm air from the
outside enters. What is an uncoupled design that somehow does not combine these
two requirements? Once such uncoupled design of the refrigerator door is & hori-
zontally hinged door, such as used in chesi-type freezers. When the door is opened
to take out milk, the cold air (since it is heavier than warm air) will sit at the bot-

CHAPTER 9: THE OBJECT-ORIENTED DESIGN PROCESS AND DESIGN AXioMs 203

tom and not escape. Therefore, opening the door provides aceess to the food and is
independent of energy loss. This type of design satisfies the first axiom.

Axiom 2 is concerned with simplicity. Scientific theoreticians often rely on a
general rule known as Occam's razor, after William of Occam, a 14th century
scholastic philosopher. Briefly put, Occam’s razor says that, “The best theory
explains the known facts with a minimum amount of complexity and ‘maximum
simplicity and straightforwardness.” gy

Occam’s razor has a very usefiil implication in approaching the design of an
object-oriented application. Let us restate Occam's razor rule of simplicity in
object-oriented termis:

The best designs usually involve the least complex code but not necessarily the fewest
number of classes or methods. Minimizing complexity should be the goal, because that
produces the most easily maintained and enhanced application. In an object-oriented
system, the best way to minimize complexity is io use inheritance and the system’s built-
in classes and to add as little as possible to what already is there.

8.4 COROLLARIES

From the two design axioms, many corollaries may be derived as a direct conse-
quence of the axioms. These corollanies may be more useful in making specific
design decisions, since they can be applied to actual situations more easily than
the original axioms. They even may be called design rules, and all-are derived from
the two basic axioms [10] (see Figure 9-2):

* Corollary 1. Uncoupled design with less information content. Highly cohesive
-objects can improve coupling because only a minimal amount of essential in-
formation need be passed between objects.

FIGURE 8-2
The origin of corollaries. Coroliaries 1, 2, and 3 are from both axioms, whereas corollary 4 |5
fram axiom 1 and corallaries 5 and & are from axiom 2,

Caoralkary 5

204 paRT FOUR: OBJECT-ORIENTED DESIGN

« Corollary 2. Single purpose. Each class must have a single, clearly defined pur-
pose. When you document, you should be able to easily describe the purpose of
a class in a few sentences,

. = Corollary 3. Large number of simple classes. Keeping the classes simple allows

reusability.

« Corollary 4. Strong mapping. There must be a strong association between the
physical system (analysis’s object) and logical design (design’s object).

s Corollary 5. Standardization, Promote standardization by designing inter-
changeable components and reusing existing classes or components.

» Corollary 6. Design with inheritance. Common behavior (methods) must be
moved 1o superclasses. The superclass-subclass structure must make logical
sense.

9.4.1 Coroliary 1. Uncoupled Design with Less Information
Content

The main goal here is to maximize objects cohesiveness among objects and soft-

ware components in order to improve coupling because only a minimal amount of
essential information need be passed between components.

9.4.1.1 Coupling Coupling is a measure of the strength of association estab-
lished by a connection from one object or software component 1o another. Cou-
pling is 4 binary relationship: A is coupled with B. Coupling is important when
evaluating a design because it helps us focus on an important issue in design. For
example. a change 10 one component of 3 system should have a minimal impact
on other components [3], Strong coupling among objects complicates a system,
since the class is harder to understand or highly interrelated with other classes. The
degree of coupling i5 a function of

1. How complicated the connection is,
2. Whether the connection refers to the object itself or something inside it.
3. What is being sent or received.

The degree, or strength, of conpling between two components is measured by
the amount and complexity of information transmitted between them. Coupling in-
creases (becomes stronger) with increasing complexity or obscurity of the inter-
face. Coupling decreases (becomes lower) when the connection is to the compo-
nent interface rather than to an internal component. Coupling also is lower for data
connections than for control connections. Object-oriented design has two types of
coupling: interaction coupling and inheritance coupling [3].

Interaction coupling involves the amount and complexity of messages between
components. It is desirable to have liule interaction. Coupling also applies to the
complexity of the message. The general guideline is to keep the messages as sim-
ple and infrequent as possible. In general, if a message connection involves more
than three parameters (e.g., in Method (X, Y, Z), the X, Y. and Z are parameters),
examine it 1o see if it can be simplified. It has been documented that objects con-
nected to many very complex messages are tightly coupled, meaning any change
to one invariability leads to a ripple effect of changes in others (see Figure 9-3).

CHAPTER 8 THE OBJECT-ORIENTED DESIGN PROCESS AND DESIGH axioms 205

A B c
D E F
] I
g G H I

FIGURE 9-3
E is a tightty couplad object.

In addition to minimizing the complexity of message connections, also reduce
the number of messages sent and received by an object [3]. Table 9-1 contains dif-
ferent types of interaction couplings.

Inheritance is a form of coupling between super- and subclasses. A subclass s
coupled to its superclass in terms of attributes and methods. Unlike interaction
coupling, high inheritance coupling is desirable. However, 1o achieve high inheritance

TABLE 9-1

TYPES OF COUPLING AMONG OBJECTS OR COMPONENTS (shown from
highest to lowest)

Degree of
coupling Mame Description

Very high Content coupling The connection involves direct reference o atiribules
or methods of another object.

High Common coupling The connection involves two objects accessing a
“global data space,” for both 1o read and write.

Medium Control coupling The connection involves axplicit control of the
processing logic of one object by anathar,

Low Stamp coupling The connecticn invoives passing an aggregate data

structure to another object, which uses only a
partion of the componants of the data structure.

Very low Data coupling The conneclion involves either simple data items or
aggregate structures all of whoze slements ane
used by the receiving object, This should be the
goal of an architeciural design,

206 rFanT FOUR: OBJECT-ORIENTED DESIGN

-

coupling in a system, each specialization class should not inherit lots of unrelated
and unneeded methods and attributes, For example, if the subclass is overwniting
most of the methods or not using them, this is an indication inheritance coupling
is low and the designer should look for an alternative generalization-
specialization structure (see Corollary 6).

9.4.1.2 Cohesion Coupling deals with interactions between objects or software
components. We also need to consider interactions within a single object or soft-
ware component, called cohesion. Cohesion reflects the “single-purposeness” of
an object. Highly cohesive components can lower coupling because only a mini-
mum of essential information need be passed between components. Cohesion also
helps in designing classes that have very specific goals and clearly defined pur-
poses (see Corollaries 2 and 3).

Methad cohesion, like function cohesion, means that a method should carry
only one function. A method that carries multiple functions is undesirable. Class
cohesion means that all the class's methods and attributes must be highly cohe-
sive, meaning to be used by internal methods or derived classes’ methods, Inheri-
tance cohesion is concerned with the following questions [3]:

+ How interrelated are the classes?
« Does specialization really portray specialization or is it just something arbitrary?

See Corollary 6, which alse addresses these questions.

9.4.2 Corollary 2. Single Purpose

Each class must have & purpose; as was explained in Chapter 7. Every class should
be clearly defined and necessary in the context of achieving the system’s goals.
When you document a class, you should be able to easily explain its purpose in a
sentence or two. If you cannot, then rethink the class and try to subdivide it into
more independent pieces. In summary, keep it simple; to be more precise, each
method must provide only one service, Each method should be of moderate size,
no more than a page: half a page is better.

9.4.3 Corollary 3. Large Number of Simpler Classes, Reusability

A great benefit results from having a large number of simpler classes. You cannot
possibly foresee all the future scenarios in which the classes you create will be
reused. The less specialized the classes are, the more likely future problems can
be solved by a recombination of existing classes, adding a minimal number of sub-
classes. A class that easily can be understood and reused (or inherited) contributes
to the overall system, while a complex, poorly designed class is just so much dead
weight and usually cannot be reused. Keep the following guideline in mind:

The smaller are your classes, the better are your chances of reusing them in other proj-

ects. Large and complex classes are tog specialized to be reused.

Object-oriented design offers a path for producing libraries of reusable parts [2].
The emphasis object-oriented design places on encapsulation, modularization, and

CHAFTER & THE OBJECT-ORIENTED DESIGN PROGESS AND DESIGN axioms 207

pelymorphism suggests rense rather than building anew. Cox's description of a
software IC library implies a similarity between object-oriented development and
building hardware from a standard set of chips [5]. The software IC library is re-
alized with the introduction of design patterns, discussed later in this chapter.

Coad and Yourdon argue that software reusability rarely is practiced effectively.
But the organizations that will survive in the 21st century will be those that have
achieved high levels of reusability—anywhere from 70-80 percent or more [3].
Griss [6] argues that, although reuse is widely desired and often the benefit of
utilizing object technology, many object-oriented reuse efforts fail because of too
namow a focus on technology and not on the policies set forth by an organization.
He recommended an institutionalized approach to software development, in which
software assets intentionally are created or acquired to be reusable. These assets
consistently are used and maintained to obtain high levels of reuse, thereby opti-
mizing the arganization's ability to preduce high-quality software products rapidly
and effectively [6].

Coad and Yourdon [3] describe four reasons why people are not utilizing this
concept:

1. Software engineering textbooks teach new practitioners to build systems from
“first principles”; reusability is not promoted or even discussed.

2. The “not invented here™ syndrome and the intellectual challenge of solving an
interesting software problem in one’s own unique way mitigates against reusing
someone else’s software companent,

3. Unsuccessful experiences with software reusability in the past have convinced
many practitioners and development managers that the concept is not practical.

4. Most organizations provide no reward for reusability; sometimes productivity
is measured in terms of new lines of code written plus a discounted credit (e.g.,
50 percent less credit) for reused lines of code.

The primary benefit of software reusability is higher productivity. Roughly
speaking, the software development team that achieves 80 percent reusability is
four times as productive as the team that achieves only 20 percent reusability. An-
other form of reusability is using a design pattern, which will be explained in the

next section.

5.4.4 Corollary 4. Strong Mapping

Object-oniented analysis and object-oriented design are based on the same model.
As the model progresses from analysis to implementation, more detail is added.
but it remains essentially the same. For example, during analysis we might iden-
tify a class Employee. During the design phase, we need to design this class—
design its methods, its association with other objects, and its view and access
classes. A strong mapping links classes identified during analysis and classes de-
signed during the design phase (e.g., view and access classes). Martin and Odell
describe this important issue very elegantly:

208 puAT FOUR: OBIECT-ORIENTED DESIGN

With OO0 technigues, the same paradigm is used for analysis, design, and implementa-

tion. The analyst identifies objects’ types and inheritance, and thinks about events thai

change the state of objects. The designer adds detail w this model perhaps designing

screens, user interaction, and client-server interaction. The thought process flows so nat-
urally from analyst to design that it may be difficult 1o tell where analysis ends and de-

sign begins. [8, p. 100]

9.4.5 Corollary 5. Standardization

To reuse classes, you must have a good understanding of the classes in the object-
oriented programming environment you are using. Most object-oriented systems,
such as Smalitalk, Java, C++, or PowerBuilder, come with several buili-in class
libraries. Similarly, object-oriented systems are like organic systems, meaning that
they grow as you create new applications. The knowledge of existing classes will
help you determine what new classes are needed to accomplish the tasks and
where you might inherit useful behavior rather than reinvent the wheel. However,
class libraries are not always well documented or, worse yet, they are documented
but not up to date. Furthermore, class libraries must be easily searched, based on
users' eriteria. For example, users should be able to search the class repository with
commands like “show me all Facet classes.” The concept of design patterns might
provide a way to capture the design knowledge, document it, and store it in a
repository that can be shared and reused in different applications.

9.4.6 Coroliary 6. Designing with Inheritance

When you implement a class, you have to determine its ancestor, what attributes
it will have, and what messages it will understand. Then, you have to construct its
methods and protocols. Ideally, you will choose inheritance to minimize the
amount of program instructions. Satisfying these constraints sometimes means that
a class inherits from a superclass that may not be obvious at first glance.

For example, say, you are developing an application for the government that
manages the licensing procedure for a variety of regulated entities. To simplify the
example, foous on just two types of entities: motor vehicles and restaurants. There-
fore, identifying classes is straightforward. All goes well as you begin to model
these two portions of class hierarchy. Assuming that the system has no existing
classes similar 1o a restaurant or a motor vehicle, you develop two classes, Mo-
torVehicle and Restaurant.

Subclasses of the MotorVehicle class are PrivateVehicle and CommercialVehi-
cle. These are further subdivided into whatever level of specificity seems appro-
priate (see Figure 9—4). Subclasses of Restaurant are designed to reflect their own
licensing procedures. This is a simple, easy to understand design, although some-
what limited in the reusability of the classes. For example, if in another project
you must build a system that models a vehicle assembly plant, the classes from
the licensing application are not appropriate, since these classes have instructions
and data that deal with the legal requirements of motor vehicle license acquisition
and renewal,

GHAPTER & THE OBJECT-ORIENTED DESIGN PROCESS AND DESIGN axions 209

MuotorVehicle

=

PrivateVehicle Commercial Velicle

FIGURE 9-4
Thie initial single inheritance design.

In any case, the design is approved, implementation is accomplished, and the
system goes into production. Now, here comes the event that every designer hoth
knows well and dreads—when the nature of the real-world problem execeeds the
bounds of the system, so far an elegant design. Say, six months later, while dis-
cussing some enhancements to the system with the right people (we leamed how
to identify right people in Chapter 6), one of them says, “What about coffee wag-
ons, food trucks, and ice cream vendors? We're planning on licensing them as both
restaurants and motor vehicles”

You know you need to redesign the application—but redesign how? The an-
swer depends greatly on the inheritance mechanisms supported by the system’s
target language. If the language supports single inheritance exclusively, the
choices are somewhat limited. You can choose to define a formal super class to
both MotorVehicle and Restaurant, License, and move common methods and at-
iributes: from both clagses into this License class (see Figure 9-5). However, the
MotorVehicle and Restaurant classes have little in common, and for the most part,
their attributes and methods are inappropriate for éach other. For example, of
what nse is the gross weight of a diner or the address of a truck? This necessi-

FIGURE 8-5
The single inheritance design modified to allow licensing food trucks.

License

MotorVehiole Restanrant

F
[I

PrivateVehicle Commercial Vehicle

210 PaRT FOUR: ORIECT-ORIENTED DESIGN

tates a very weak formal class (License) or numerous blocking behaviors in both
MotorVehicle and Restaurant, This particular decision results in the least reusable
classes and potentially extra code in several locations. So, let us try another ap-
prodch.

Altemnatively, you could preserve the original formal classes, MotorVehicle and
Restaurant, Next, define a FoodTruck class to descend from CommercialVehicle
and copy enough behavior into it from the Restaurant class to support the appli-
cation’s requirements (see Figure 9-6).

You can give FoodTruck copies of data and instructions from the Restaurant
class that allow it to report on food type, health code categories, number of chefs
and support staff, and the like. The class is not very reusable (Coad and Yourdon
call it cut-and-paste reusability), but at least its extra code is localized, allowing
simpler debugging and enhancement. Coad and Yourdon describe cut-and-paste
type of reusability as follows [4, p. 138]:

This is better than no reuse at all, but is the most primitive form of reuse. The clerical
cost of transcribing the code has largely disappeared with today’s cul-and-paste text ed-
itors; nevertheless, the software engineer runs the risk of introducing ermors during the
copying (and modifications) of the original code. Worse is the configuration manage-
ment problem: it is almost impossible for the manager to keep track of the multiple mu-
tated uses of the original “chunk” of code.

If, on the other hand, the intended language supports multiple inheritance, an-
other route can be taken, one that more ¢losely models the real-world situation. In
this case, you design a specialized class, FoodTruck, and specify dual ancestry.
Our new class aliernative seems lo preserve the integrity and code bulk of both an-
cestors and does nothing that appears to affect their reusability.

In-actuality, since we never anticipated this problem in the original design, there
probably are instance variables and methods in both ancestors that share the same
names. Most languages that support multiple inheritance handle these "hits" by
giving precedence to the first ancestor defined. Using this mechanism, reworking
will be required in the FoodTruck descendant and, quite possibly. in both ances-
tors (see Figure 9-7). It easily can become difficult to determine which method,

FIGURE 9-&
Alternatively, you can modify the single inheritance design to allow licensing food irucks,
Restaurant
MoworVehiole
PrivaeVehicle CommercialVehicle

Food Truck

CHAPTER & THE OBJECT-CRIENTED DESIGN PROCESS AND DESIGN axioms 211

MotorVehicle
.tP
I I
PrivareVehicle CommercialVehicle I Restarant

FIGURE 8-T
Multiple inheritance design of the system siructure,

in which class, affected an erroneously updated variable in an instance of a new
descendant. The difficulties in maintaining such a design increase geometrically
with the number of ancestors assigned to a given class.

9.4.6.1 Achieving Multiple Inheritance in a Single Inheritance System Sin-
gle inheritance means that each class has only a single superclass. This technigue
is used in Smalltalk and several other object-oriented systems. One result of using
a single inheritance hierarchy is the absence of ambiguity as to how an object will
respond to a given method; you simply trace up the class tree beginning with the
object’s class, looking for a method of the same name. However, languages like
LISP or C++ have a multiple inheritance scheme whereby objects can inherit be-
havior from unrelated areas of the class tree. This could be desirable when you
want a new class to behave similar fo more than one existing class. However, mul-
tiple inheritance brings with it some complications, such as how to determine
which behavior to get from which class, particularly when several ancestors define
the same method. It also is more difficult to understand programs written in a mul-
tiple inheritance system.

One way of achieving the benefits of multiple inheritance in a language with
single inheritance is to inherit from the most appropriate class and add an object
of another class as an attribute or aggregation. Therefore, as class designer, you
have two ways to borrow existing functionality in a class. One is to inherit it, and
the other is to use the instance of the ¢lass (object) as an attribute. This approach
is described in the next section.

9.4.6.2 Avoiding Inheriting Inappropriate Behaviors Beginners in an object-
oriented system frequently err by designing subclasses that inherit from inappro-
priate superclasses. Before a class inherits, ask the following questions:

* Is the subclass fundamentally similar to its superclass (high inheritance cou-
pling)?

* Is'it an entirely new thing that simply wants to borrow some expertise from its
superclass (low inheritance coupling)?

212 PART FOUR: QBJECT-ORIENTED DESIGN

Often you will find that the latter is true, and if so, you should add an attribute
that incorporates the proposed superclass’s behavior rather than an inheritance
from the superclass. This is because inheritors of a class must be intimate with all
its implementation details, and if some implementation is inappropriate, the in-
heritor’s proper functioning could be compromised. For example, if FoodTruck in-
herits from both Restaurant and CommercialVehicle classes, it might inherit a few
inappropriate attributes and methods. A better approach would be to inherit only
from CommercialVehicle and have an attribute of the type Restaurant (an instance
of Restaurant class). In other words, Restaurant class becomes a-part-of FoodTruck
class (see Figure 9-8),

9.5 DESIGN PATTERNS

In Chapter 4, we looked at the concept of patterns. A design pattern provides a
scheme for refining the subsystems or components of a software system or the re-
Tationships among them [1]. In other words, design patterns are devices that al-
Tow systems to share knowledge abowt their design, by describing commonly re-
curring structures of communicating compenents. that_solve a_general design
problem within a_particular context. For example, in programming, we have en-
“cotntered many problems that occurred before and will occur again, The question
we must ask ourselves is how we are going to solve it this time [7],

In Chapter 4, we learned that documenting patterns is one way that allows reuse
and possibly sharing information learned about how it is best to solve a specific
program design problem.

Essays usually are written by following a fairly well-defined form, and so is doc-
umenting design patterns (see Chapter 4 for the general form for documenting a
pattern). Let us take a look at a design pattern example created by Kurotsuchi [7].

= Pattern Name: Facade

* Ratipnale and Motivation: The facade pattern can make the task of accessing a
large number of modules much simpler by providing an additional interface
layer. When designing good programs, programmers usually attempt to avoid ex-
cess coupling between modules/classes. Using this pattern helps to simplify

FIGURE 95-8
The FoodTruck class inherits from CommiercialVehicle and has an attribute of the type Restaurant,
The ralationship between FoodTruck and Restaurant is a-part-of.

MotorVehicle
I]
PrivateVehicle Commercial Vehicle
Food Treck

Restaserant

CHAPTER 9: THE OBJECT-ORIENTED DESIGN PROCESS AND DESIGN axioMs 213

much of the interfacing that makes large amounts of coupling complex to use
and difficult to understand. In a nutshell, this is accomplished by creating a small
collection of classes that have a single class that is used 1o access them, the fa-
cade.

* Classes; There can be any number of classes involved in this “facade™ system,
but at least four or more classes are required: One client, the facade, and the
classes underneath the facade. In a typical situation, the facade would have a
limited amount of actual code, making calls to lower layers most of the time.

* Advamtages/Disadvanrages: As stated before, the pnmary advantage to using the
facade is to make the interfacing between many modules or classes more man-
ageable. One possible disadvantage to this pattern is that you may lose some
functionality contamed in the lower level of classes, but this depends on how the
facade was designed.

* Examples: Imagine that you need to write a program that needs to represent a
building as rooms that can be manipulated—manipulated as in intersacting with
objects in the room to change their state, The client that ordered this program
has determined that there will be a need for only a finite number of objects (e.g.,
windows. screens, projectors, etc.) possible in each room and a finite number of
operations that can be performed on each of them, You, as the program archi-
teet, have decided that the facade pattern will be an excellent way to keep the
amount of interfacing low, considering the number of possible objects in each
room, and the actions that the client has specified. A sample action for a reom
is (o “prepare it for a presentation.” You have decided that this will be part of
vour facade interface since it deals with a large number of classes but does nol
really need to bother the programmer with intéracting with each of them when
a room needs to be prepared. Here is how that facade might be organized (see
Figure 9-9). Consider the sheer simplicity from the client’s side of the problem.

FIGURE 9-9
Using a design pattern facade eliminates the pead for the Client elass to deal with 2 [amge num-
ber of classes.

Client

¥

Facabe

¢?¢

Projector Screen Window

¢ Y]
Somathing

214 PART FOUR; OBJECT-ORIENTED DESIGN

CHent
Projector Sereen Window
Something
FIGURE 9-10
Not utilizing the design pattern facade, the Client class needs fo deal with a large number of
classas.

A less thought-out design may have looked like this, making lots of interaction
by the client necessary (see Figure 9-10).

9.6 SUMMARY

In this chapter, we looked at the object-oriented design process and design axioms.
Integrating design axioms and corollaries with incremental and evolutionary styles
of software development will provide you a powerful way for designing systems.
During design, emphasis shifts from the application domain concept toward im-
plementation, such as view (user interface) and access classes. The objects dis-
covered during analysis serve as the framework for design.
The object-oriented design process consists of

Designing classes (their attributes, methods, associations, structures, and proto-
cols) and applying design axioms. If needed, this step is repeated.

» Designing the access layer.

* Designing the user interface.

» Testing user satisfaction and usability, based on the usage and use cases.

» Dterating and refining the design.

The two design axioms are

» Axiom |. The independence axiom. Maintain the independence of components.
» Axiom 2. The information axiom. Minimize the information content of the de-
sign.

The six design corollaries are

« Corollary 1. Uncoupled design with less information content.

CHAPTER 9 THE OBJECT-ORIENTED DESIGN PROCESS AND DESIGN aAxioms 215

Corollary 2. Single purpose.

Corollary 3. Large number of simple ¢lasses,
Corollary 4. Strong mapping.

Corollary 5. Standardization.

Corollary 6. Design with inheritance,

Finally, we looked at the concept of design patterns, which allow systems to
share knowledge about their design. These describe commonly recurring problems.
Rather than keep asking how to solve the problem this time, we could apply the
design pattern (solution) in a previous probléem.

KEY TERMS

Axiom (p. 202)
Cohesion (p. 206)
Corollary (p. 202)
Coupling (p. 204)
Design pattern (p. 212)
Theorem (p. 202)

REVIEW QUESTIONS

1. What iz the tzk of design? Why do we nesd analysis?
2. What is the significance of Occam's razor?
3. How does Occam's razor relate to object-oriented design?
4. How would you differentiate good design from bad design?
5. What is the basic activity in designing an application?
6. Why i5 a large number of simple classes better than a small number of complex classes?
7. What is the significance of being able to describe in a few sentences what a class does?
8. What clues would you use to identify whether a-ciass is in need of revision?
9. What is the common occurrence in the first attempt of designing classes with inheri-
tance? How would you know? What should you do o fix it?
10. How can an chject-oriented system be thonght of as an organic svstem?
11. How can encapsulation, modularization, and polymorphism improve reusability? (Hint:
Review Chapter 2.)
12. Why are people not atilizing reusability? List some reasons.
13, Why is it important to know about the classes in the object-oriented programming sys-
tem you use’
14. How would you decide on subdividing your classes into a hierarchy of super- and sub-
classes?
15. What are the challenges in designing with inheritance?
16. Describe single and multiple inhentance.
17. What are the risks of a cut-and-paste type of reusability?
18. How can you achieve multiple inheritance in & single inheritance system?
19. How can you avoid a subelass inheriting inappropriste behavior?
20. List the object-oriented design axioms and corollaries,

216 PiAT FOUR: OBJECT-ORIENTED DESIGN

21. What is the relationship between coupling and cohesion?
22. How would you further refine your design?

PROBLEMS
1. Consult the World Wide Web or the library to obtain an article on the Booch design

method. Write a paper based on your findings.

2, Research the Web and write a report on the tools that support patierns-based design and

development.

3. Revisit the classes that you identified in the object-oriented analysis for the Grandma's

Soups application. What are some of the new classes or attributes and methods that must
be added for implementation?

4, The compilers used every day 1o process computer code are & prime example of the fa-

cade pattern in action. What other examples are there?

¥

2

Appleton, Brad. “Patterns and Software: Essential Concepts and Terminology.”
hitp:/fwww.enterict.com/~-bradapp/docs/pattern-intro.html, 1997,

. Blum, Bruce L. Software Engineering, a Holistic View, New York: Oxford University

Press, 1992,

. Coad, P and Yourdon, E. Object-QOriented Analysis. Englewood Cliffs. NJ: Yourdon

Press; 1991,

. Coad, P.; and Yourdon, E. Object-Oriented Design. Englewood Cliffs, NI: Yourdon

Press, 1991,

. Cox, B. 1. Object-Oriented Programming. Reading, MA: Addison-Wesley, 1986.
. Girss, M, L. “Software Reuse: Objects and Frameworks Are Not Enough” Object

Magazine 4, no, 9 (February 1995).

. Kurotsuchi, Brian T. “Design Patterns.” hutp://www.csec.calpoly edu/~dbutler/tutori-

alsfwinter6/patterns!,

. Martin, James; and Odell, James, Object-Oriented Analvsis and Design. Englewood

Cliffs, NI: Prentice-Hall, 19492,

. Rumbaugh, JTames; Blaha, Michael; Premerlani, William: Eddy, Frederick; and Lorenson,

William. Object-Oriented Modeling and Design. Englewood Cliffs, NJ: Prentice-Hall,
1991.

. Suh, Mam. The Principle of Destgn. New York: Oxford University Press, 1990,

Designing Classes

Chapter Objectives

You should be able to define and understand

* Designing classes,

* Designing protocols and cliss visibility.

* The UML object constraint language (OCL),
* Desipning methods.

10.1 INTRODUCTION

Ohbject-oriented design requires taking the objects identified during object-oriented
analysis and designing classes to represent them. As a class designer, you have 1o
know the specifics of the class you are designing and be aware of how that class
interacts with other clagses. Once you have identified your classes and their inter-
actions, you are ready to design classes. '

Underlying the functionality of any application is the quality of its design. In
this ch_ap_l_gr, we |ook at guidelines and approaches to use in designing classes and

their methods. Although the design concepts to Bé discussed in this chapter are
s al;'we will concentrate on designing the business classes (see Chapter 6). The
access and view layer classes will be described in the subsequent chapters. How-
ever, the same concepts will apply to designing access and view layer classes.

10.2 THE OBJECT-ORIENTED DESIGN PHILOSOPHY

Object-oriented development requires that you think in terms of classes, A great
benefit of the object-oriented approach is that classes organize related properties
into units that stand on their own. We go through a similar process as we leamn

217

218 PRt FOUR: OBRIECT-ORIENTED DESIGN

about the world around us. As new facts are acquired, we relate them to existing
structures in our environment (model). After enough new facts are acquired about
a certain area, we creaté new structurés o accommodate the greater level of detail
in our knowledge.

The single most important activity in designing an application is coming up
with a set of classes that work together to provide the functionality you desire. A
given problem always has many solutions, However, al this stage, you must trans-
late the attributes and operations into system implementation, You need 1o decide
where in the class tree your new classes will go. Many object-oriented program-
ming languages and development énvironments, such as Smalltalk, C++, or
PowerBuilder, come with several built-in class libraries. Your goal in using these
systems should be to reuse rather than create anew. Similarly, if you design your
classes with reusability in mind, you will gain a lot in productivity and reduce the
time for developing new applications.

The first step in building an application, therefore, should be (o design a set of
classes, each of which has a specific expertise and all of which can work together
in useful ways, Think of an object-oriented system a$ an organic system, one thal
evolves as you create each new application. Applying design axioms (see Chapter
9} and carefully designed classes can have a synergistic effecl. not only on the cur-
rent system but on its future evolution. If you exercise some discipline as you pro-
ceed, you will begin 1o see some extraordinary gains in your productivity com-
pared 1o a conventional approach.

10.3 UML OBJECT CONSTRAINT LANGUAGE

In Chapter 5, we learned that the UML is a graphical language with a set of rules
and semantics, The rules and semantics of the UML are expressed in English, in
a form known as object constraint language. Object constraint language (OCL)
is a specification language that uses simple logic for specifying the properties of
a system.

Many UML modeling constructs require expression; for example, there are ex-
pressions for types, Boolean values, and numbers. Expressions are stated as strings
in ohject constraint language. The syntax for some common navigational expres-
sions is shown here. These forms can be chained together. The leftmost element
must be an expression for an object or a set of objects. The expressions are meant
to work on sets of values when applicable.

-R?lem..rr!e_-frar. The selector is the name of an atribute in the item. The result is
. 4" the value of the atiribute; for example, John.age (the age is an attribute of the
o) object John, and John.age represents the value of the atribute),

« Jtem.selector [qualifier-value]. The selector indicates a qualified association that
qualifies the item. The result is the related object selected by the qualifier; for
example, array indexing as a form of qualification; for example, John. Phone[2],
assuming John has several phones.

o Set —=> select (hoolean-expression). The Boolean expression is written in terms

CHAPTER 10: DESIGMING CLasses 219

of objects within the set. The resull is the subset of objects in the set for which

the Boolean expression is true; for example, company.employee => salary = 30000.
This represents employees with salaries over $30,000.

Other expressions will be covered as we study their appropriate UML notations.
However, for more details and syntax, see UML OCL documents,

10.4 DESIGNING CLASSES: THE PROCESS

In Chapter 9, we looked at the object-oriented design process. In this section, we
concentrate on step 1 of the process, which consists of the followings activities:

1. Apply design axioms to design classes, their attributes, methods, associations,
structures, and protocols,
L.1. Refine and complete the static UML class diagram by adding details to
that diagram.
L.1.1. Refine attributes.
1.1.2. Design methods and the protocols by utilizing a UML activity dia-
gram to represent the method's algorithm,
1.1.3. Refine the associations between classes (if required).
L.1.4. Refine the class hierarchy and design with inhertance (if reguired).
1.2, lterate and refine.

Object-oriented design is an iterative process. After all, design is as much about
discovery as construction, Do not be afraid to change your class design as you gain
experience, and do not be afraid to change it a second, third, or fourth time. At
each iteration, you can improve the design. However, the trick is to correct the de-
sign flaws as early as possible; redesigning late in the development cycle always
is problematic and may be impossible.

10.5 CLASS VISIBILITY: DESIGNING WELL-DEFINED PUBLIC,
PRIVATE, AND PROTECTED PROTOCOLS '

In designing methods or attributes for classes, you are confronted with two prob-
lems. One is the protocol, or interface to the class operations and its visibility; and
the other is how it is implemented, Often the two have very little to do with each
other. For exiample, you might have a class Bag for collecting various objects thal
counts multiple ocouwrrences of its elements. One implementation decision might
be that the Bag class uses another class, say, Dictionary (assuming that we have a
class Dictionary). to actually hold its elements. Bags and dictionaries have very lit-
tie in common, so this may seem curious to the outside world. Implementation, by
definition, 18 hidden and off limits to other objects. The cliss’s protocol, or the
messages that a class understands, on the other hand, can be hidden from other ob-
jects (private protocol) or made available o other objects (public protocol). Pub-
lic protocols define the functionality and external messiges of an object; private
protocols define the implementation of an object (see Figure 10-1).

220 PuRT FOUR: ORJECT-DRIENTED DESIGN

Privag Lal} profeecd

Messages

Subclass

FIGURE 10-1 g
Fublic protocols define the funclionality and exiernal massapes of an object, while private prote-
colz define tha implemientation of an object.

It is important in object-oriented design to define the public protocol between
the associated classes in the application. This is a set of messages that a class of
a certain generic type must understand, although the interpretation and implemen-
tation of each message is up to the individual class.

A class also might have a set of methods that it uses only internally, messages
to itself. This, the private protocol (visibility) of the class, includes messages that
normally should not be gent from other objects; it is accessible only 1o operations
of that class. In private protocol, only the class itsélf can use the method. The pub-
lic protocol (visibility) defines the stated behavior of the class as a citizen in a pop-
ulation and is important information for users as well as future descendants, so it
is accessible to all classes. If the methods or attributes can be used by the class it-
self or 1ts subclasses, a protected protocol can be used. In a profected protocol (vis-
ihility). subclasses the can use the method in addition to the class itself.

Lack of a well-designed protocol can manifest itself as encapsulation leakage.
The problem of epcapsulation leakage occurs when details about a class’s inter-
nal implementation are disclosed through the interface. As more internal details
become visible, the flexibility to make changes in the future decreases, If an im-
plementation is completély open, almost no flexibility is retained for future
changes. It is fine to reveal implementation when that is intentional, necessary, and

CHAPTER 10: DESIGNING CLASSES 221

carefully controlled. However, do not make such a decision lightly because that
could impact the flexibility and therefore the quality of the design.

For example, public or protected methods that can access private attributes can
reveal an important aspect of your implementation. If anyone uses these functions
and you change their location, the type of attribute, or the protocol of the method,
this could make the client application inoperable,

Design the interface between a supérclass and its subclasses just as carefully as
the class’s interface to clients; this is the contract between the super- and sub-
classes. If this interface is not designed properly, it can lead to violating the en-
capsulation of the superclass. The protected portion of the class interface can be
accessed only by subclasses, This feature is helpful but cannot express the totality
of the relationship between a class and its subclasses. Other important factors in-
clude which functions might or might not be overridden and how they must behave.
It alzo is crucial to consider the relationship among methods. Some methods might
need to be overridden in groups to preserve the class's semantics. The bottom line
is this: Design your interface to subclasses so that a subclass that uses every sup-
ported aspect of that interface does not compromise the integnty of the public in-
terface. The following paragraphs summarize the differences between these layers.

10.5.1 Private and Protected Protocol Layers: Internal

Items in these layers define the implementation of the object. Apply the design ax-
ioms and corollaries, especially Corollary 1 {uncoupled design with less informa-
ton content, see Chapter 9) to decide what should be private: what atiributes (in-
stance variables)? What methods? Remember, highly cohesive objects can improve
coupling because only a minimal amount of essential information need be passed
between objects.

10.5.2 Public Protocol Layer: External

Items in this layer define the functionality of the object. Here are some things to
keep in mind when deslgmng class protocals:

* Good design allows for polymorphism.
* Not all protocol should be public; again apply design axioms and corollaries.

The following key questions must be answered:

* What are the class interfaces and protocols?

* What public (external) protocol will be used or what external messages must the
systemn understand?

* What private or protected (intermal) protocol will be used or what internal mes-
sages or messages from a subclass must the system understand?

10.6 DESIGNING CLASSES: REFINING ATTRIBUTES

Attributes identified in object-oriented analysis must be refined with an eye on im-
plementation during this phase. In the analysis phase, the name of the attribute was
sufficient. However, in the design phase, detailed information must be added to the

222 pART FOUR: OBRJECT-ORIENTED DESIGN

model {especially, that defining the class attributes and operations). The main goal
of this activity is to refine existing antributes (identified in analysis) or add attrib-
utes that can elevate the system into implementation.

10.6.1 Attribute Types
The three basic types of attributes are

1. Single-value atinbutes,
2. Multiplicity or multivalue attributes.
3. Reference to another object, or instance connection.

Attributes represent the state of an object. When the state of the object changes,
these changes are reflected in the value of attributes. The single-value attribute is
the most common attribute type. It has only one value or state. For example, at-
tributes such as name, address, or salary are of the single-value type.

The multiplicity or multivalue attribute is the opposite of the single-value at-
tribute since, as its name implies. it can have a colléction of many values al any
point in time [2]. For example, if we want to keep track of the names of people who
have called a customer support line for help. we must use the multivalues attributes.

Instance connection attributes are required o provide the mapping needed by
an object to fulfill its responsibilities, in other words, instance connection model
association. For example, a person might have one or more bank accounts. A per-
son has zero to many instance connections to Account(s). Similarly, an Account
can be assigned to one or more persons (i.e., joint account). Therefore, an Account
also has zero to many instance connections to Person(s).

10.6.2 UML Attribute Presentation

As discussed in Chapter 5, OCL can be used during the design phase to define the
class attributes. 'Il"he fulluwm; is the attribute presentation suggested by UML:

visibility rmme : Iype- e.rpressmn ={nitial-value
Where visibiliry is one of the following:

+ public visibility {accessibility to all classes),
protected visibility (accessibility to subclasses and operations of the class).
— private visibility (accessibility only to operations of the class).

Tyvpe-expression is a language-dependent specification of the implementation
type of an attribute.

Initial-value is a language-dependent expression for the initial value of a newly
created object. The initial value is optional, For example, +size: lenpth = 100

The UML style guidelines recommend beginning attribute names with a lower-
case letter

In the absence of a multiplicity indicator (array), an auribute holds exactly one
value. Multiplicity may be indicated by placing a multiplicity indicator in brack-
ets after attribute name; for example,

CHAPTER 10: DESIGNING cLassEs 223

names[10]: String

points[2..*]: Point

The multiplicity of 0..1 provides the possibility of null values: the absence of a
value, as opposed to a particular value from the range. For example, the following
declaration permits a distinction between the null value and an empty string;
name[0..1]; String

10.7 REFINING ATTRIBUTES FOR THE VIANET BANK OBJECTS

in this section, we go through the ViaNet bank ATM system classes and refine the
attributes identified during object-oriented analysis (see Chapter 8).

10.7.1 Refining Attributes for the BankClient Class
During object-oriented analysis, we identified the following attributes (see Chap-
ter 8):

firstName

lastName

pinNumber

cardNumber

At this stage, we need to add more information to these attributes, such as vis-

ibility and implementation type. Furthermore, additional attributes can be identi-
fied during this phase to enable implementation of the class:

#irstName: String

#lastMame: String

#pinNumber: String

#cardMumber: String

#account; Account (instance connection)

In Chapter 8, we identified an association between the BankClient and the Ac-
count classes (see Figure 8-9). To design this association, we need to add an ac-
count attribute of type Account, since the BankClient needs to know about his or
her account and this attribute can provide such information for the BankClient
class, This is an example of instance connection, where it represents the associa-
fion between the BankClient and the Account objects, All the attributes have been
given protected visibility,

10.7.2 Refining Attributes for the Account Class

Here is the refined list of attributes for the Account class;

#mumber: String
#balance: float

224 PuET FOUR: OBJECT-ORIENTED DESIGN

#rangaction: Transaction (This attribute is needed for implementing the associ-
‘ation between the Account and Transaction classes.)
#bankClient; BankClient (This attribute is needed for implementing the associ-
ation between the Account and BankClient classes.)

At this point we must make the Account class very general, so that it can be
reused by the checking and savings accounts.

10.7.3 Refining Attributes for the Transaction Class
The attributes for the Transaction class are these:

#transIDy: String

#ransDate: Date

#ransTime: Time

#ransType: String

tamount: float

#posiBalance: float

Problem 10.1

Why do we not need the account attribute for the Transaction class? Hint: Do
transaction objects need to know about account objects?

10.7.4 Refining Attributes for the ATMMachine Class
The ATMMachine class could have the following attnibutes:

#address; Suing
#atate: String

10.7.5 Refining Attributes for the CheckingAccount Class

Add the savings attribute 1o the class. The purpose of this attribute is to implement
the association between the CheckingAccount and SavingsAccount classes.

10.7.6 Refining Attributes for the SavingsAccount Class

Add the checking attribute to the class. The purpose of this attribute is to imple-

ment the association between the SavingsAccount and CheckingAccount classes.
Figure 10-2 (see Chapter 8) shows a more complete UML class diagram for

the bank system. At this stage, we also need to add a very short description of each

attribute or certain attribute constraints. For example,

Class ATMMachine

#address: String (The address for this ATM machine.)

#utate: String (The state of operation for this ATM machine, such as running,
off, idle, out of money, security alarm,)

CHAFTER 10: DESIGNING CLASSES 225

Bank
o
) 4]
| ‘BankClient
| EfirsiName : String I
#lastName | String ATMMachine
#cordNumber © String e e e S — #aiddress | String
#pinNumber ; String #state - Sinng
Sgecount © Account
|
Has | | Transaction
dAsocunt ftransiD - String
#number : Sirng i . #transCiate ; Dyile
.2 #balance : flow Account-Transaction #iransTime : Time
fbankClient - BankClient | #ransType : String
#iransaction : Transaction i'm;n;::l : Hgl
post fece - Flosad
| |
CheclingAccount 1 Savings Checking SavingeAccount
REAVIOLES | Account . #checking @ Accouni
FIGURE 10-2

A more complate UML class diagram for the ViaNel bank system,

10.8 DESIGNING METHODS AND PROTOCOLS

The main goal of this activity is to specify the algorithm for methods identified so
far. Once you have designed your methods in some formal structure such as UML
activity diagrams with an OCL description, they can be converted to programming
language manually or in automated fashion (i.e., using CASE tools), A class can
provide several types of methods [3]:

* Constructor. Method that creates instances (objects) of the class,

* Destructor. The method that destroys instances.

* Conversion method. The method that converts a value from one unit of measure
Lo anather,

* Copy method. The method that copies the contents of one instance to another
instance.

* Atrribute ser. The method that sets the values of one or more attributes.

* Antribure get. The method that returns the values of one or more attributes,

+ /0 merhods, The methods that provide or receive data to or from a device,

* Domain specific. The method specific to the application.

Recall from Chapter 9. Corollary 1, that in designing methods and protocols you
must minimize the complexity of message connections and keep as low as possi-
ble the number of messages sent and received by an object. Your goal should be

226 PART FOUR: OBIECT-ORIENTED DESIGN

to maximize cohesiveness among objects and software components to improve
coupling, because only a minimal amount of essential information should be
passed between components. Abstraction leads to simplicity and straightforward-
ness and, at the same time, increases class versatility, The requirement of simpli-
fication, while retaining functionality, seems to lead to increased utility. Here are
five rules [1]:

1. If it looks messy, then it's probably a bad design.

2. If it is too camplex, then it’s probably a bad design.
3, If it is too big, then it's probably a bad design.

4. If people don’t like it, then it’s probably a bad design,
5. If it doesn't work. then it's probably a bad design.

10.8.1 Design Issues: Avoiding Design Pitfalls

As described in Chapter 9, it is important to apply design axioms to avoid com-
mon design problems and pitfalls. For example, we learned that it is much better
to have a large set of simple classes than a few large, complex classes. A common
occurrence is that, in your first attempt, your class might be 1o big and therefore
more complex than it needs to be. Take the time to apply the design axioms and
corollaries, then critique what you have proposed. You may find you can gather
common pieces of expertise from several classes. which in itself becomes another
“peer” class that the others consult; or you might be able to create a superclass for
several classes that gathers in a single place very similar code. Your goal should
be maximum reuse of what you have to avoid creating new classes as much as pos-
sible. Take the time to think in this way—good news, this gets easier over time.

Lost object focus is another problem with class definitions, A meaningful class
definition starts out simple and clean but, as time goes on and changes are made,
becomes larger and larger, with the class identity becoming harder to state con-
cisely (Corollary 2. This happens when you keep making incremental changes (o
an existing class. If the class does not quite handle a situation, someone adds a
tweak to its description. When the next problem comes up, another tweak is added.
Or, when a new feature is requested, another tweak is added, and so on. Apply the
design axioms and corollaries, such as Corollary 2 (which states that each class
must have a single, clearly defined purpose). When you document, you easily
should be able to describe the purpose of a class in a few sentences.

These problems can be detected early on. Here are some of the warning signs
that something is going amiss. There are bugs because the internal state of an ob-
ject is too hard to track and solutions consist of adding paiches. Patches are char-
acterized by code that looks like this: “If this is the case, then force that (o be true”
or “Do this just in case we need to” or “Do this before calling that function, be-
cause it expects this."

Some possible actions to solve this problem are these:

« Keep a careful eye on the class design and make sure that an object’s role re-
mains well defined, If an object loses focus, you need to modify the design. Ap-
ply Corollary 2 (single purpose).

OHAFTER 10! DESIGNING CLassEs 22T

* Move some functions into new classes that the object would use. Apply Corol-
lary | (uncoupled design with less information content).

* Break up the class into two or more classes, Apply Corollary 3 (large number of
simple classes).

* Rethink the class definition based on experience gained.

10.8.2 UML Operation Presentation

The following operation presentation has been suggested by the UML. The oper-
ation syntax 1s thig:

visibility name: (parameter-list): renem-rype-expression C—
Where visibility i one of:

+ public visibility {accessibility 1o all classes), _
protected visibility (accessibility to subclasses and operations of the class),
= private visibility (accessibility only to operations of the class).

Here. name 15 the name of the operation.

Parameter-list: is a list of parameters, separated by commas, each specified by
name: type-expression = default value (where name is the name of the parameter,
type-expression is the language-dependent specification of an implementation
type. and default-value is an optional value).

Return-type-expression; is a language-dependent specification of the imple-
mentation of the value returned by the method. If return-type is omitted, the oper-
ation does not return a value:; for example,

+getMame(): aName
+ getAccountNumber (account: type): account Number

The UML guidelines recommend beginning operation names with a lowercase let-
ier.

10.9 DESIGNING METHODS FOR THE VIANET BANK OBJECTS

Al this point, the design of the bank business model is conceptually complete. You
have identified the objects that make up your business layer, as well as what ser-
vices they provide. All that remains is (o design methods, the user interface, data-
‘base access, and implement the methods using any object-oriented programming
language. To keep the book language independent. we represent the methods® al-
gorithms with UML actwlty diagrams, which very easily can be translated into any
language. In essence, this phase prepares the system for the implementation. The
actual coding and implementation (although they are beyond the scope of this
book) should be relatively easy and, for the most part, can be automated by using
CASE tools. This is because we know what we want to code, It is always difficult
to code when we have no clear understanding of what we want to do.

228 pPiRT FOUR: OBJECT-ORIENTED DESIGN

I BankClient:4verfyPassword (cardNumber; String; aPIN:Siring paClient; BankClient

aClent = refrieveCliznt

(CardNumber, aPIN) FeettievelCHent (candMumber String, aFIN-Smng i eClhens BankCliem

il o Display “Incomrect F’lﬂ)
PIN valid PIN not valid "'\ pleaie try again”

Frovide sccess
1o the account

FIGURE 10-3

An activity diagram for the BankClient class verfyPassword method, using OCL fo deseribe the
diagram. The syntax for descriting & class's method is Class name:methodiame. We postpone
design of the retrieveClient to Chapter 11, Section 11.10. Designing Access Layer Classas,

10.9.1 BankClient Class VerifyPassword Method

The following describes the verifyPassword service in greater detail. A client PIN
code is sent from the ATMMachine object and used as an argument in the verify-
Password method, The verifyPassword method retrieves the client record and
checks the entered PIN number against the client’s PIN number. If they match, it
allows the user to proceed. Otherwise, a message sent to the ATMMachine dis-
plays “Incorrect PIN, please try again™ {see Figure 10-3),

The verifyPassword methods performs first creates a bank client object and
attempts to retrieve the client data based on the supplied card and PIN numbers,
At this stage, we realize that we need to have another method, retrieveClient. The
retrieveClient method takes two arguments; the card number and a PIN number,
and returns the client object or “nil" if the password is not valid. We postpone
design of the retrieveClient method to Chapter 11 (Section 11.10, designing the
dccess layer classes).

10.9.2 Account Class Deposit Method

The following describes the deposit service in greater detail. An amount to be de-
posited is sent to an account object and used as an argument to the deposit ser-
vice. The account adjusts its balance to its current balance plus the deposit
amount. The account object records the deposit by creating a transaction ohject
containing the date and time, posted balance, and transaction type and amount
{see Figure 10-4),

Once again we have discovered another method, updateClient. This method, as
the name suggests, updates client data, We postpone design of the updateClient
method to the Chapter 11 (designing the access layer classes).

CHAPTER 10! DESIGNING CLASSES 229

(balance = balance + snAmount) - Account:+deposi (anAmouni:Float)

(: Update client accoant) Account:#updateAccount (number, balance)

(-_ Creste Transaction) Account:#create Transaction("depotit’, anAmount, balance)

FIGURE 10-4
An activity diagram for the Account class deposit method.

10.9.3 Account Class Withdraw Method

This is the generic withdrawal method that simply withdraws funds if they are
available. It is designed to be inherited by the CheckingAccount and SavingsAc-
count classes to implement automatic funds transfer. The following describes the
withdraw method. An amount to be withdrawn is sent to an account object and
used as the argument to the withdraw service. The account checks its balance for
sufficient funds. If enough funds are available, the account makes the withdrawal
and updates its balance; otherwise, it returns an error, saying “insufficient funds.”
If successful, the account records the withdrawal by creating a transaction object
containing date and time, posted balance, and transaction type and amount (see
Figure 10-5).

10.9.4 Account Class CreateTransaction Method

The createTransaction method generates a record of each transaction performed
ggainst it. The description is as follows, Each time a successful transaction is

FIGURE 10-5
An activity diagram for the Account class withdraw mathod.

Account:ewithdraw (prAmount: Floa):RemmCode: Siring
balance < anAmount RemmCode =
ba e gt =\ “Insufficient funds"

elient secount Account::# update Accoumt (mumber, balance)

Create Tranzaction) Account:#create Transaction] “Withdraw®, enAmount, balarce)

8

230 riRT FOUR: OBJECT-ORIENTED DESIGN

Account: MereateTranssction (alype-Siring, anAmount:float, pBalance: float)

#Tran. postBalance
= pBalance

aTran transDate
= date (today)

ATTan, Amount aTren ransTime
= @A AmownL = tirme(now)

FIGURE 10-6 :
An activity diagram for the Account class createTransaction method,

performed against an account, the account object creates a transaction object to
record it. Arguments into this service include transaction type (withdrawal or
deposit), the transaction amount, and the balance after the transaction. The account
creates a new transaction object and sets its attributes to the desired information.
Add this description 1o the creareTransaction’s description field (see Figure
106,

10.9.5 Checking Account Class Withdraw Method

This is the checking account-specific version of the withdrawal service. It takes
into consideration the possibility of withdrawing excess funds from a companion
savings account. The description is as follows, An amount to be withdrawn is sent
to a checking account and used as the argument to the withdrawal service. If the
account has insufficient funds to cover the amount but has a companion savings
account, it tries to withdraw the excess from there, If the companion account has
insufficient funds, this method returns the appropriate error message, If the com-
panion account has enough funds, the excess is withdrawn from there, and the
checking account balance goes to zero (0). If successful, the account records the
withdrawal by creating a transaction object containing the date and time, posted
balance, and transaction type and amount (see Figure 10-7).

10.9.6 ATMMachine Class Operations

The ATMMachine class provides an interface (view) to the bank system. We post-
pone designing this class to Chapter 12.

10.10 PACKAGES AND MANAGING CLASSES

A package groups and manages the modeling elements, such as classes, their as-
sociations, and their structures, Paclkages themselves may be nested within other
packages. A package may contain both other packages and ordinary model ele-

CHAPTER 10! DESIGNING CLAsSES 231

Checking Account:+withdmaw (anAmount: etk ResumnCode: String

Withdraw using A witkickidi
[ﬂccuum clags me’umd) S tiymou)

gecoaint
insafficient funds Dioegn t hitve s3vings account
Has savings account
uffic FavingsAccountwithdr
e Py SavingsAcoountbalance-
{anAmouant —
Check Accouni.balance)
J withdraw using Vo
SavingsAccount method
L
(retumCode) (refurnCode =
= OK insufficient funds Insufficient funds

sufficient finds

FIGURE 10-T7
An aclivity diagram for the CheckingAccount class withdrawal mathod.

y

ments, The entire system description can be thought of as a single high-level sub-
system package with everything else in it. All kinds of UML model elements and
diagrams can be organized into packages. For example, some packages may con-
tain groups of classes and their relationships, subsystems, or models. A package
provides a hierarchy of different system components and can reference other pack-
ages. For example, the bank system can be viewed as a package that contains other
packages, such as Account package, Client package, and so on. Classes can be
packaged based on the services they provide or grouped into the business classes,
access classes, and view classes (see Figure 10-8). Furthermore, since packages
own model elements and model fragments, they can be used by CASE tools as the
basic storage and: access control.

In Chapter 5, we learned that a package is shown as a large rectangle with a
small rectangular tab. If the contents of the package are shown, then the name of
the package may be placed within the tab. A keyword string may be placed above
the package name. The keywords subsvstem and model indicate that the package
i5 & meta-model subsystem or model. The visibility of a package element outside
the package may be indicated by preceding the name of the element by a visibil-
ity symbol (+ for public, — for private. # for protected). If the element is in an in-
ner package, its visibility as exported by the outer package is obtained by com-
bining the visibility of an element within the package with the visibility of the
package itself: The most restrictive visibility prevails.

232 PART FOUR: OBJECT-ORIENTED DESIGN

Bank
o
BankClient
FfirstiName : String
#iastName : String ATMMachine
WesrdMumber : Sming L o e e e ——po—— Haddress : String
#pinMNumbher ; String # stivle - String
bseeount @ Accoant
Hu::ymw:du Agcount Transection
'I 5 o "
. ':‘:S'm'lsﬁ”n:f #transiD ; String
#bankClient - BankClient | , ||| el Take
1.2 i R e i Arcount-Tronsaction | #ransTime © T'II_D:
0 #iransType - Saring
+wd|d1d=pnmﬂ:-:] I #ramount ; float
: #postBalamce - foat
:TMMIEI:::{; Haccount - Account
fereate Transactiond}
I Q 1
CheckingAceount |, Savings Checking | SavingsAocount
#aivings © Account ! #l:h:l:l.'ing i Aceounl
+withdraw)
FIGURE 10-8
More complete UML class diagram for the ViaNel bank ATM aystem. Note that the method pa-
amater list is not shawn,

Relationships may be drawn between package symbols to show relationships
between at least some of the elements in the packages. In particular, dependency
between packages implies one or more dependencies among the elements. Figure
10-9 depicts an even more complete class diagram the ViaNet bank ATM system.

10.11 SUMMARY

The single most important activity in designing an application is coming up with
a set of classes that work together to provide the needed functionality. After all,
underlying the functionality of any application is the quality of its design.

This chapter concentrated on the first step of the object-onented design process,
which consists of applying the design axioms and corollaries to design classes,
their attnibutes, methods, associations, structures, and protocols; then, iterating and
refining.

During the analysis phase, the name of the attribute should be sufficient. How-
ever, during the design phase. detailed information must be added to the model (es-
pecially, definitions of the clase attributes and operations). The UML provides a
language to do just that. The rules and semantics of the UML can be expressed in
English, in a form known as ebject constraint language (OCL). OCL is a specifi-
cation language that uses simple logic for specifying the properties of a system.

CHAPTER 10: DESIGNING CLASSES 233

ViaNet Bank ATM System |
BankClient
#firstName : String =
#lsthame : Siring ATMMachine
#cardNumber : String — o | #addres: ; String
WpinMumber . String # state ; Sinng
#account ; Account _—_ﬂ
___—I oo +\'|:nt'y'P:;sswu|‘dH
1.2 Aceount Transaction
#number ; String #iransiD : Siring
#halance : float HiraneDiale | Date
fbankCliem : BankCliznt | « . #ranaTime : Time
#transaction : Transactipn | Acceunt-Transaetion #ransType - String
+ileposit() 1 #amount : finat
Fwithdraw(} #postBalance : float
NretrieveAceouni() #account : Account
HupdnteAccounti)
#ereme Transaction)
|1 4 1
Checking Accoum [Savings-Checking Savingshecount
Heavings : Account " fichecking . Accoant
+irithdraw)
FIGURE 10-9

Tha ViaNet bank ATM system package and its subsystems.

Lack of a well-designed protocol can manifest itself as encapsulation leakage.
This problem occurs when details about a class’s internal implementation are dis-
closed through the interface. As more internal details become visible, the flexibil-
ity for making changes in the future is decreased. If an implementation is com-
pletely open, almost no flexibility is retained for furure changes, Decide what
aitributes and methods should be private, protecied, or public. Use private and pro-
tected protocols to define the implementation of the object; use public protocols
to define the functionality of the object.

Remember five rules to avoid bad design:

L. If it looks messy, then it's probably a bad design.

2. If it is too complex, then it's probably a bad design.
3. Ifit is too big, then it's probably a bad design.

4. If people don’t like it, then it's probably a bad design,
5. IFit doesn’t work, then it’s probably a bad design,

The UML package is a grouping of model elements. It can organize the mod-
cling elements including classes. Packages themselves may be nested within other
packages. A package may contain both other packages and ordinary model ele-
ments. The entire system description can be thought of as a single, high-level sub-
system package with everything else in it.

234 PART FOUR: OBJECT-ORIENTED DESIGN

Object-oriented design is an iterative process. Designing is as much about dis-
covery as construction. Do not be afraid to change a class design, based on expe-
rience gained, and do not be afraid to change it a second, third, or fourth time. At
each iteration, vou can improve the design. However, the trick is to fix the design
as early as possible; redesigning late in the development cycle is problematic and
may be impossible.

KEY TERMS

Encapsulation leakage (p. 220)

Object constraint language (OCL) (p. 218)
Private protocol (visibility) (p. 220)
Protocol (p. 219}

Protected protocol (visibility) (p. 220)
Public protocol (visibility) (p. 220)

REVIEW QUESTIONS

1. What aré public and private protocols? What is the significance of separating these two
protocols?

2. Whal are some characteristics of a bad design?

3. One of the most important skills you can develop is questioning your design, which
causes you to think, “Wait a minute, this is starung to get messy.” What are some other
warming signs that things are about 1o go amiss?

4. How do design axioms help avoid design pitfalls?

5. Name some problems that come from the lack of a well-designed protocol; for example,
giving every method and auribute public visibility.

6. We learned that, 1o design association, we need to add an instance connection attribute
1o a class, In a client-server association, does the server need to know aboul the client?
In other words, must we add instance ¢onnection attributes of the client in the server
clage?

PROBLEMS

1. Which corollary (or corollaries) would you apply to design well-defined public, private.
and protected protocols?

2. To solve some of the design pitfalls, we could apply the following corollanes. Please ap-
ply esch corollary and explain how the design axioms and corollanes can help in avoid-
ing design axioms:

» Keepa careful eye on the class design and make sure that an object’s role remaing well
defined. If an object loses focus, you need to modify the design. Apply Corollary 2
(single purpose).

« Move some functions into new classes that the object would use. Apply Corollary |
(uncoupled design with less information content).

« Break up the class into two or more classes. Apply Corollary 3 (large number of sim-
ple classes),

3. Design the quese, order quetie, and inventory queue classes in the Grandma's Soups ap-
plication (see Chapler G).

CHAPTER 10: DESIGNING CLASSES 235

1. Gause, Donald G.; and Weinberg, G, M. Exploring Requirements: Quality Before De-
sign. New York: Dorset House, 1989,

= Norman, Ronald. Object-Oriented Systems Analysis and Design. Englewood Cliffs, NI
Prentice-Hall, 1996,

3. Texel, Putnam; and Williams, Charles B. Use Cases Combined with Bodch OMT UML
Englewood Cliffs, NJ: Prentice-Hall, 1997.

Access Layer: Object
Storage and Object
Interoperability

Chapter Objectives

You should be able to define and understand

+ Object storage and persistence,

+ Darabase managemen! systems and their technology.
* Client-server computing.

+ Distributed databises.

+ Distributed ohject computing.

* Object-oriented database management systems.

+ Object-relational systems.

+ Designing socess layer objects.

11.1 INTRODUCTION

A database management system (DBMS) is a set of programs that enables the cre-
ation and maintenance of a collection of related data. A DBMS and associated pro-
grams access, manipulate, protect, and manage the data. The fundamental purpose
of a DBMS is to provide a reliable, persistent data storage facility and the mech-
amisms for efficient, convenient data access and retrieval. A database is supposed
to represent a real-world situation as completely and accurately as possible. The
data model incorporated mto a database system defines a framework of concepis
that can be used to express an application [5].

Persistence refers 1o the ability of some objects to outlive the programs that cre-
ated them. Object lifetimes can be short, as for local objects (these objects are tran-
sient), or long, as for objects stored indefinitely in a database (these objects are
persistent). Most object-oriented languages do not support serialization or object

237

23B FRT FOUR: OBJECT-ORIENTED DESIGN

=g

i

persistence, which is the process of writing or reading an object to and from a per-
sistent storage medium, such as a disk file. Even though a reliable, persistent stor-
age facility is the most important aspect of a database, there are many other aspects
as well, Persistent object stores do not support query or interactive user interface
facilities, as found in fully supported object-oriented database management sys-
tems. Furthermore, controlling concurrent access by users, providing ad-hoc query
capability, and allowing independent control over the physical location of data are
examples of features that differentiate a full database from simply a persistent
store, This chapter introduces you to the issues regarding object storage, relational
and object-oriented database management systems, object interoperability, and
other technologies. We then look at current trends to combine object and refational
systeéms 1o provide a very practical solution to object storage. We conclude the
chapter with a discussion on how to design the access layer objects.

11.2 OBJECT STORE AND PERSISTENCE: AN OVERVIEW

A program will create a large amount of data throughout its execution. Each item
of data will have a different lifetime. Atkinson et al. [1] describe six broad cate-
gories for the lifetime of data:

1. Transient results 1o the evaluation of expressions.

| 2. Variables involved in procedure activation (parameters and variables with a lo-

\ A

calized scope).
. 3. Global variableés and variables that are dynamically allocated.
4. Data that exist between the executions of a program.
5. Data that exist between the versions of a program.

6. Darta that outlive a program,

The first three categories are fransient data, data that cease to exist beyond the
lifstime of the creating process. The other three are nontransient, or persistent,
data.

Typically, programming languages provide excellent, integrated support for the

first three categories of transient data, The other three categories can be supported
by a DBMS, or a file system.

The same issues also apply to objects; afier all, objects have a lifetime, 100.
They are created explicitly and can exist for a period of time (during the applica-
tion session). However, an object can persist beyond application session bound-
aries, during which the object is stored in a file or a database. A file or a database
can provide a longer life for objects—longer than the duration of the process in
which they were creatéd. From a language perspective, this characteristic is called
persistence. Essential elements in providing a persistent store are [4]:

« Identification of persistent objects or reachability (object ID).

» Properties of objects and their intérconnections. The store must be able to co-
herently manage nonpointér and pointer data (i.e., interobject references).

+ Scale of the object store. The object store should provide a conceptually infinite
store.

CHAFTER 11: ACOESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 239

* Stability. The system should be able to recover from unexpected failures and re-
turn the system to a recent self-consistent state, This is similar to the reliability
requirements of a DBMS, object-oriented or not,

Having separate methods of manipulating the data presents many problems.
Atkinson et al. [1] claim that typical programs devote significant amounts of code
to transferring data to and from the file system or DBMS. Additionally, the use of
these external storage mechanisms leads to a variety of technical issues, which will
be examined in the following sections.

11.3 DATABASE MANAGEMENT SYSTEMS

Databases usoally are large bodies of data seen as critical resources 10 a company.
As mentioned earlier, a DBMS is a sét of programs that enable the creation and
maintenance of a coflection of related data. DBMSs have a number of properties
that distinguish them from the file-based data management approach. In traditional
file processing, each application defines and implements the files it requires. Ls-
ing a database approach, a single repository of data is maintained. which can be
defined once and subsequently accessed by various users (see Figure 11-1).

A fundamental characteristic of the database approach is that the DBMS con-
tins not only the data but a complete definition of the data formats it manages.
This description is known as the schema, or metg-data, and contains a complete
definition of the data formats, such as the data structures, types, and constraints.

In traditional file processing applications, such meta-data usually are encapsu-
fated in the application programs themselves, In DBMS, the format of the meta-
data is indepéndent of any particular application data structure:-therefore, it will

FIGURE 11-1
Database systern vs, lile sysiam.

Marketing
Sales
: Accounty
Engingening DEMS Emigloyes
Invenidry
A Customer
COOUNINE Darts

[nnbase System

Engineering : Pirts I

Marketing [I frvenitony I
Accoanting I I Acéoubite I

File System

240 euaT FOUR: OBJECT-ORIENTED DESIGN

provide a generic storage management mechanism. Another advantage of the data-
base approach is program-data independence. By moving the meta-data into an ex-
ternal DBMS, a ldyer of insulation is created between the applications and the
stored data structures. This allows any number of applications to access the data
in a simplified and uniform manner.

11.3.1 Database Views

The DBMS provides the database users with a concepiual representation that is in-
dependent of the low-level details (physical view) of how the data are stored. The
database can provide an abstract data model that uses logical concepts such as
field, records, and tables and their interrelationships. Such a model is understood
more easily by the user than the low-level storage concepts.

This abstract data model also can facilitate multple views of the same under-
lying data. Many applications will use the same shared information but each will
be interested in only a subset of the data. The DBMS can provide multiple virtual
views of the data that are tailored to individual applications. This allows the con-
venience of a private data representation with the advantage of globally managed
informarion.

11.3.2 Database Models

A ditabase model is a collection of logical constructs used to represent the data
structure and data relationships within the database. Basically, database models
may be grouped into two catégories: mnmmen models.
The conceptual model focuses on the logical nature of that data presentation.
Therefore, the conceptual model is concerned with what is represented in the data-
hase and the implementation model is concerned with how it is represented [12].

11.3.2.1 Hierarchical Model The hierarchical model represents data as a single-
rooted tree. Each node in the tree represents a data object and the connections rep-
resent a parent-child relationship. For example, a node might be a record contan-
ing information about Motor vehicle and its child nodes could contain a record
about Bus parts (see Figure 11-2). Interestingly enough, a hierarchical model re-
sembles super-sub relationship of objects.

FIGURE 11-2

A hierarchical model. The top layer, the rool, is perceived as the parent of the segmant directly
below It In this case motor vehicle is the parent of Bus, Truck, and Car. A segment alsa s
called a node. The segments below another node are the children of ths node above them,
Bus, Truck, and Car are tha children of Motor Vehicle.

Motor Vehicle

R R R RO RRRRROBEEBRD

CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 241

s

Order

FIGURE 11-3
Network model. An Order contalns data from both Customer and Soup.

11.3.2.2 Network Model A network database model is similar 1o a hierarchical
database, with one distinction. Unlike the hierarchical model, a network model’s
record can have more than one parent. For example, in Figure 11-3, an Order con-
tains data from the Soup and Customer nodes.

11.3.2.3 Relational Model Of all the database models, the relational model has
the simplest, most uniform structure and is the most commercially widespread.
The primary concept in this database model is the relation, which can be thought
of gs a table. The columns of each table are attributes that define the data or value
domain for entries in that column. The rows of each table are tuples representing
ndividual data objects being stored. A relational table should have only one pri-
mary key. A primary key is a combination of one or more attributes whose value
unambiguously locates each row in the table. In Figure 11-4, Soup-1D, Cusi-ID,
and Order-ID are primary keys in Soup, Customer. and Order tables. A foreign
key is a primary key of one table that is embedded in another table to link the ta-
bles. In Figure 11-4, Soup-ID and Cust-ID are foreign keys in the Order table,

FIGURE 11-4

The figure depicts primary and foreign keys in a relation database, Soup-ID is a primary key of
e Soup table, Cust-ID is & primary key of the Customer table, and Order-ID is a primary key of
the Ordar table. Soup-1D and Cust-ID are foreign keys in the Ordar tabila.

Soup Table Costomer Table
Key Key
Soup-I | Soup Mame Price —P Cust-ID | Name | Address | Phone 8

Fareign
Order Table Keys v

Key JOrder-IDY Soup-ID | Cuse-lD | OTY

242 PART FOUR: OBJECT-ORIENTED DESIGN

11.3.3 Database Interface

The interface on a database must include a data definition language (DDL), a
query, and data manipulation language (DML). These languages must be designed
to fully reflect the flexibility and constraints inherent in the data model. Database
systems have adopted two approaches for interfaces with the system. One is to
embed a database language, such as structured query language (SQL), in the host
programming language. This approach is a very popular way of defining and de-
signing a database and its schema, especially with the popularity of languages
such as SQL, which has become an industry standard for defining databases. The
problem with this approach is that application programmers have to leam and use
two different languages. Furthermore, the application programmers have to nego-
tiate the differences in the data models and data structures allowed in both lan-
guages [R].

Another approach is to extend the host programming language with database-
related constructs. This is the major approach, since application progrummers need
to learn only a new construct of the same language rather than a completely new
language. Many of the currently operational databases and object-oriented data-
base systems have adopted this approach; a good example is GemStone from
Servio Logic, which has extended the Smalltalk object-oriented programming.

11.3.3.1 Database Schema and Data Definition Language To represent infor-
mation in a database, a mechanism musi exist to describe or specify to the data-
base the entities of interest. A data definition language (DDL) is the language
used to describe the structure of and relationships between objects stored in a data-
base. This structure of information is termed the database schema. In traditional
databases, the schema of a database is the collection of record Types and set types
or the collection of relationships, templates, and table records used to store infor-
mation about entities of interest to the application.

For example, to create logical structure or schema, the following SQL command
can be used:

CHEATE SCHEMA AUTHORIZATION (creator)
CREATE DATABASE (database nams)

For example,

CREARTE TABLE INVENTORY (Inventory_WNumber CHAR(10)NOT WULL
DESCRIPTION CHAR(25) NOT HULL FRICE DECIMAL (%, 2)):

where the boldface words are SQL keywords,

11.3.3.2 Data Manipulation Language and Query Capabilities Any time data
are collected on virtually any topic, someone will want to ask questions about it.
Someone will want the answers to simple questions like “How many of them are
there?" or mare intricate questions like “What is the percentage of people between
ages 21 and 45 who have been employed for five years and like playing tennis?”

Asking questions—more formally, making queries of the data—is a typical and
common use of a database, A query usually is expressed through a query language,
A datae manipulation language (DML) is the language thal allows users to access

CHAPTER 11! ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 243

and manipulate (such as, create, save, or destroy) data organization. The structured
gquery language (SQL) is the standard DML for relational DBMSs. SQL is widely
used for its query capabilities. The guery usually specifies

* The domain of the discourse over which to ask the query.

* The elements of peneral interest,

* The conditions or constraints that apply.

* The ordering. sorting, or grouping of elements and the constraints that apply to
the ordering or grouping,

Query processes generally have sophisticated “engines” that determine the best
way to approach the database and execute the query over jt. They may use infor-
mation in the database or knowledge of the whereabouts of particular data in the
network to optimize the retrieval of a query,

Traditionally, DML are either procedural or nonprocedural. A procedural DML
requires users Lo specify what data are desired and how (o get the data. A nonpro-
cedural DML, like most databases’ fourth generation programming language
i4GLs), requires users to specify what data are needed but not how to get the data,
Object-oriented query and data manipulation languages. such as Object SQL, pro-
vide object management capabilities to the data manipulation language.

In a relational DBMS, the DML is independent of the host programming lan-
guage. A host language such as C or COBOL would be used to write the body of
the application. Typically, SQL statements then are embedded in C or COBOL ap-
plications to manipulate data. Once SQL is used to request and retrieve database
data, the results of the SQL retrieval must be transformed into the data structures
of the programming language. A disadvantage of this approach is that program-
mers code in two languages, SQL and the host language. Another is that the strue-
iural ransformation is required in both database access directions, to and from the
database.

For example, 1o check the table content, the SELECT command is used, followed
by the desired attributes. Or, if you want to see all the attributes listed, use the (*)
o indicate all the attributes; SELECT DESCRIPTION, PRICE FROM INVENTORY;
where inventory is the name of a table.

11.4 LOGICAL AND PHYSICAL DATABASE ORGANIZATION AND
ACCESS CONTROL

Logical database organization refers to the concepiual view of database structure
and the relationships within the database. For example, object-oriented systems
represent databases composed of objects, and many allow multiple databases to
share information by defining the same object, Physical database organization
refers to how the logical components of the database are represented in a physical
form by operating system constructs (i.e., objects may be represented as files).

11.4.1 Shareability and Transactions

Data and objects in the database often need to be accessed and shared by differ-
ent applications. With multiple applications having access o the object concur-
rently; it is likely that conflicts over object access will arise. The database then

244 pPaRT FOUR: OBJECT-ORIENTED DESIGN

must detect and mediate these conflicts and promote the greatest amount of sharing
possible without sacrificing the integrity of data. This mediation process is man-
aged through concurrency control policies. implemented, in part, by transactions.

A fransaction is a unit of change in which many individual modifications are
aggregated into-a single modification that occurs in its-entirety or not at all. Thus.
either all changes to objects within a given transaction are applied to the database
or none of the changes. A transaction is said to commit if all changes can be made
successfully to the database and to abort if canceled because all changes to the
database cannot be made successfully, This ability of transactions ensures atomi-
city of change that maintain the database in a consistent state.

Many transaction systems are designed primarily for short transactions (lasting
on the order of seconds or minutes). They are less suitable for long transactions,
lasting hours or longer. Object databases typically are designed to suppornt both
short and long transactions. A concurrénce control pohey dictates what happens
when conflicts arise between transactions that attempt access to the same object
and how these conflicts are to be resolved.

11.4.2 Concurrency Policy

As you might expect, when several users (or applications) attempt to read and
write the same object simultaneously, they create a contention for object. The con-
currency control mechanism is established 1o mediate such conflicts by making
policies that dictate how they will be handled.

A hasic goal of the transaction is to provide each user with a consistent view of
the database. This means that transactions must occur in serial order. In other
words, a given user must see the database as it exists either before a given trans-
gction occurs or after that transaction,

The most consérvative way to enforce serialization is to-allow a user to lock all
objects or records when they are accessed and to release the locks only after a
transaction commits. This approach, traditionally known as a conservative or pes-
simistic Eﬂ!lﬂ' provides exclusive access to the object, despite what is done 10 it.
The policy is very conservative because no other user can view the data until the
object is released. However, by distinguishing betwein querying (reading or get-
ting data from) the object and writing to it (which is achieved by qualifying the
type of lock placed in the object-read lock or -write lock), somewhal greater con-
currency can be achieved, This policy allows many readers of an object bot only
ong writer.,

Under an optimistic policy, two conflicting transactions are compared in their
entirety and then their serial ordering is determined. As long as the database is able
to serialize them so that all the objects viewed by each transaction are from a con-
sistent state of the database; both can continue even though they have read and
write locks on a shared object. Thus, a process can be allowed to obtain a read
lock on-an object already write locked if its entire transaction can be senalized as
if it occurred either entirely before or entirely after the conflicting transaction. The
reverse also is true: A process may be allowed to obtain a write lock on an object
that has a read lock if its entire transaction can be serialized as if it occurred after
the conflicting transaction. In such cases, the optimistic policy -allows more
processes 1o operate concurrently than the conservative policy.

CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 245

11.5 DISTRIBUTED DATABASES AND CLIENT-SERVER COMPUTING

Many modern databases are distributed databases, which implies that portions of
the database reside on different nodes (computers) and disk drives in the network.
Usually, each portion of the database is managed by a server, a process responsi-
hle for controlling access and retrieval of data from the database portion. The
server dispenses information to client applications and makes queries or data re-
quests to these client applications or other servers. Clients generally reside on
nodes in the network other than those on which the servers execute: However, both
can reside on the same node, too.

11.5.1 What I= Client-Server Computing?

Client-server computing is the logical extension of modular programming. The
fundamental assumption of modular programming is that separation of a large
piece of software into its constituent parts (“modules™) creates the pessibility for
zasier development and better maintainability.

Client-server computing extends this theory a step further by recognizing that
21l those modules need not be executed within the same memory space Of even on
the same machine. With this architecture, the calling module becomes the “client”
(that which requests a service) and the called module becomes the “server” (that
which provides the service; see Figure 11-5). Another important component of
client-server computing is connectivity, which allows applications 1o communicate
rransparently with other programs or processes, regardless of their locations. The
key element of connectivity is the network operating system (NOS), also known
as middleware. The NOS provides services such as routing, distribution, messages,
filing and printing, and network management [6].

The client is a process (program) that sends a message 1o a server process (pro-
gram) requesting that the server perform a task (service), Client programs usually
manage the user interface portion of the application, validate data mwma by the
user, dispatch requests to server programs, and sometimes execute business logic.
The business layer contains all the objects that represent the business (real objects),

FIGURE 11-5
Twoe-tiar client-sarver system.

i Application strver

LAN or WAN

Client Client Chent

2486 PART FOUR:; OBIECT-ORIENTED DESIGN

such as Order, Custumer. Lineitem, Inventory. The client-based process is the

face {GLH] which nunnally is a part of the operating system (ie., . the Windows
manager). It is responsible for detecting user actions, managing the Windows on
the display, and displaying the data in the Windows.

A server process (program) fulfills the client request by performing the task re-
quested, “Server programs generally receive requests from client programs, execute
database retrieval and updates, manage data integrity, and dispatch responses to
client requests. Sometimes, SETVer PrOgrams execute common or complex business
logic. The server-based process “may” run on another machine on |J1: network.
then is provided both filé system services and application services. Tn some cases,
another desktop machine provides the application services. The server process acts
as a software engme that manag-:ts shared resources such as databases, pnntl:rs

e e [l et o

the back-end tasks that aré common to similar apphcannns

The server can take different forms. The simplest form of server is a file server.
With a file server, the client passes requests for files or file records over a network
to the file server. This form of data service requires large bandwidth (the range of
data that can be semt over a given medium simultaneously) and can considerably
slow down a network with many users. Traditional LAN computing allows users
to share resources, such as data files and peripheral devices [6].

Mure advanced forms of servers are database servers, transaction servers, ap-

" pass SQL requegls as messages to the wWEr and the results of the qunry are re-
turned over the network. Both the code that processes the SQL request and the data
reside on the server, allowing it to use its own processing power to find the re-
guested data. This is in contrast to the file server, which requires passing all the
records back to the client and then letting the client find its own data.

With transaction servers, clients invoke remote procedures that reside on servers,
which also contain an SQL database engine. The server has procedural statements
to execute a group of SQL statements (transactions), which either all succeed or
fail 4s & unit.

The applications based on transaction servers, handled by on-line transaction
processing (OLTP), tend to be mission-critical applications that always require a
1-3 second response time and tight control over the security and the integrity of
the database. The communication overhead in this approach is kept to a minimum,
since the exchange typically consists of a single request and reply (as opposed o
multiple SOL statements in database servers).

Application servers are nol necessarily database centered but are used lo serve
user needs, such as downloading capabilities from Dow Jones or regulaling an
electronic mail process. Basing resources on a server allows users to share data,
while security and management services, also based on the server, ensure data in-

CHAFTER 11 ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 247

DBMS: server or
Legacy data ind
application

Application. or
Web server

[

Client Clieni Clignt
FIGURE 11-8
Threa-tierad architecturs.

tegrity and security [6]. The logical extension of this is to have clients and servers
running on the appropriate hardware and software platforms for their functions.
For example, database management system servers should run on platforms spe-
cially designed and configured to perform queries, and file servers should run on
platforms with special elements for managing files.

Ina rwo-tier architecture, a client talks directly to a server, with no intervening
server, This type of architecture typically is used in small environments with less
than 50" users (see Figure 11-3). A common error in client-server development is
10 prepare a prototype of an application in a small, two-tier environment then scale
ap by simply adding more users to the server. This approach usually will result in
an ineffective system, as the server becomes overwhelmed. To properly scale up
t0 hundreds or thousands of users. it usually is necessary to move to a three-tier
architecture [14].

A three-tier architecture introduces a server (application or Web server) be-
tween the client and the server. The role of the application or Web server is man-
ifold. It can provide translation services (as in adapting a legacy applxcaunn on a
mainframe to a client-server environment), metering services (as in acting as a
ransaction monitor to limit the number of simultancous requests to a given server),
or intelligent agent services (as in mapping a request (0 a number of different
servers, collating the results, and returning a single response to the client) [14] (see
Figure 11-6),

Ravi Kalakota describes the basic characteristics of client-server architectures
as follows [6]:

I. A combination of a cliént or front-énd portion that intericts with the userand o server
or backend portion that interacts with the shared resource. The chient process con-
tains solution-specific logic and provides the interface between the user and the rest

Please note thot this number depends on many other factors, such as number of transactions per sec-
ond, a8 well as the size of the server, the: capacity of the network, and so forth.

248 eaaT FOUR: OBJECT-ORIENTED DESIGN

of the application system. The server process acts as a sofiware engine that manages
shared resources such as databases, printers, modems, or high-powered processors.

2. The front-end task and back-end task have - fundamentally different rnqum:r_mn_’is for
computing resources such as processor speeds, memory, disk speeds and capacities,
and input/outputl devices.

3. The environment is typically heterogeneous and multivendor. The hardware platform
and operating system of client and server are not usually the same. . Clignt and server
processes communicate through a well-defined set of standard application program
interfaces (APIs) .

4. An important charactéristic of clieni-server systems is scalability, They can be scaled
herizontally or vertically, Horizontal scaling means adding or removing client work-
stations with only a slight performance impact. Vertical | scaling means migrating 1o
a larger and faster server maching or multiservers,

Client-server and distributed computing have arisen because of a change in busi-
ness needs, Unfortunately, most businesses have existing systems, based on older
technology, that must be incorporated into the new, integrated environment; that
is, mainframes with a great deal of legacy (older application) software.

Robertson-Dunn [13] answers the question “why build client-server applica-
tions? by pointing out that “business demands the increased benefits.” The dis-
tinguishing charactenstic of a client-server application is the high degree of inter-
action among various application components [3], These are the interactions
between the client's requests and the server's reactions (o those requests. To un-
derstand these interactions, we look at the chent-server application's components.
A typical client-server application consists of the following components:

1. User interface. This major component of the client-server application interacts
with users, screens, Windows, Windows management, keyboard, and mouse
handling.

2. Business processing. This part of the application uses the user interface data to
perform business tasks. In this book, we look at how to develop this component
by utilizing an object-oriented technology.

3. Database processing.This part of the application code manipulates data within
the apphication. The data are managed by a database management system, object
onented or not. Data manipulation 1s done using a data manipulation language,
such as SQL or a dialect of SQL (perhaps, an object-oriented query language).
Ideally, the DBMS processing 15 transparent to the business processing layer of
the application.

The development and implementation of client-server computing 15 more com-
plex, more difficult. and more expensive than traditional, single process applica-
tions. However, ntilizing an object-oriented methodology, we can manage the com-
plexity of client-server applications.

11.5.2 Distributed and Cooperative Processing
The distributed pms:ng means distnbution of apph{:ahuns and business logic

across multiple processing platf:.‘:nns Distributed processing imphes that process-
ing will eccur on more than one pl‘D-l'.‘tSﬁCH‘ in order for a transaction to be com-

CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBIECT INTEROPERABILITY 249

Applicanon Apphcation
fragment 2 fragment |
Server 2 é Server | gl
Client Chigi Chient
FIGURE 11-7
Distributed processing.

pleted. In other words, processing is distributed ‘across two or more machines,
where each process performs part of an application in a sequence. These processes
may not run at the same time (see Figure 11-7). For example, in processing an
order from a client, the client information may process 2t one machine and the
account information then may process on a different machine. Often, the object
used in a distributed processing environment also is distributed across piat-
forms [6].

Cooperative processing is computing thal requires two or more distinet L proces-
sors to complete a single transaction. Coopcrauw: prm:essmg is related to both dis-

wributed and client-server processing. Cooperative processing is a form of distrib-
uted computing in which two or more distinct processes are required to complete

a single business transaction. Usually, these programs intersct and execute con-
currently on different processors (see Figure 11-8). Cooperative processing also
can be considered to be a style of distributed processing, if communication be-
rween processors is performed through a message-passing architecture [6],

FIGURE 11-8
Cooperalive processing,

[

I Cooperative processing

Applicitions, % P Applications:
Windows 93 Windenws
ACCESS ACCESS

Lostus: Ltues

250 raRT FOUR: OBJECT-ORIENTED DESIGN

11.6 DISTRIBUTED OBJECTS COMPUTING: THE NEXT
GENERATION OF CLIENT-SERVER COMPUTING

In the preceding section, we looked at what is now considered the first generation
of client-server computing. Eventually, the server code in your client-server sys-
tem will give way to collections of distributed objects. Since all of them will need
to talk to each other, the second generation of client-server computing is based on
distributed object computing, which will be covered in the next section,

Software technology is in the midst of a major computational shift toward dis-
tributed object computing (DOC). Distributed computing 15 poised for a second
client-server revolution, a transition from first generation client-server era to a next
generation client-server era. In this new client-server model, servers are plentiful
instead of scarce (because every client can be a server) and proximity no longer
matters. This immensely expanded client-server model is made possible by the re-
cent exponential network growth and the progress in network-aware multithreaded
desktop operating systems.

In the first generation client-server era, which still is very much in progress,
SQL darabases. transaction processing (TP) monitors, and groupware have begun
to displace file servers as client-server application models. In the new client-server
era, distributed object technology is expected to dominate other client-server ap-
plication models.

Distributed object computing promises the most flexible client-server systems,
because it utilizes reusable software components that can roam anywhere on net-
works, run on différent praiforms, communicaie with legacy applications by means
of object wrappers,” and manage themselves and the resources they control. Ob-
jects can help break monelithic applications into more manageable components
that coexist on the expanded bus.

Distributed objects are reusable software components that can be distributed
and accessed by users across the network. These objects can be assembled into dis-
tributed applications [9], Distributed object computing introduces a higher level of
abstraction into the world of distributed applications. Applications no lenger con-
sist of clients and servers but users, objects. and methods. The user no longer needs
to know which server process performs a given function, All information about the
function is hidden inside the encapsulated object. A message requesling an operi-
tion is sent to the object, and the appropriate method is invoked.

Distributed object computing will be the key part of tomorrow’s information
systems. DOC resulied from the need to integrate mission-critical applications and
data residing on systems that are geographically remote, sometimes from users and
often from each other, and running on many different hardware platforms. Fur-
thermore, the information systems must link applications developed in different
languages, use data from object and relational databases and from mainframe sys-
tems, and be optimized for use across the Internet and through deparimental in-
tranets. Historically. businesses have had to integrate applications and data by
writing custom interfaces between systems, forcing developers to spend their time

* Concepruaily, an object wrapper is very similar 1o un access layer, discussed tater i this chapier.

CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 251

building and maintaining an infrastructure rather than adding new business
functionality,

Distributed object technology has been tied to standards from the early stage.
Since 1989, the Object Management Group (OMG), with over 500 member com-
panies, has been specifying the architecture for an open software bus an which ob-
fect components written by different vendors can operate across networks and op-
erating systems. The OMG and the object bus are well on their way to becoming
the universal client-server middleware,

Currently, there are several competing DOC standards, including the Object
Management Group’s CORBA, OpenDoc, and Microsoft's ActiveX/DCOM. Al-
though DOC technology offers unprecedented computing power, few organiza-
uons have been able to hamess it as yet. The main reasons commonly cited for
slow adoption of DOC include closed legacy architecture, incompatible protocols,
madequate network bandwidths, and security issues, In the next subsections, we
ook at Microsoft's DCOM and OMG's CORBA.

11.6.1 Common Object Request Broker Architecture

Many organizations are now adopting the Object Management Group's common
object request broker architecture (CORBA), a standard proposed as a means to
miegrate distributed, heterogeneous business applications and data. The
imierface definition language (IDL) allows developers to specify language-neutral,
object-oriented interfaces for application and system components. IDL definitions
zre stored in an interface repository, a sort of phone book that offers object inter-
faces and services. For distributed enterprise computing, the interface repository is
central to communication among objects located on different systems.

CORBA object request brokers (ORBs) implement a communication channel
through which applications can access object interfaces and request data and services
{see Figure 11-9). The CORBA common object environment (COE) provides system-

FIGURE 11-%9
Tha Commin Object Reques! Broker Architecture (CORBA),

Applicstion chjects Domnann objects
SV R

ker ((ORE)

Narmng_ & Concurmency

Persistence Events Transaction

CXinject request bin

252 PART FOUR: OBJECT-ORIENTED DESIGN

level services such as life cycle management for objects accessed through CORBA,
event notification between objects, and transaction and concurrency control,

11.6.2 Microsoft's ActiveX/DCOM

Microsofi’s component object mode] (COM) and its successor the distributed com-
ponent object model (DCOM) are Microsoft’s altemmatives to OMG’s distributed
ohject architecture CORBA. Microsoft and the OMG are competitors, and few can
say for sure which technology will win the challenge. Although CORBA benefits
from wide industry support, DCOM is supporied mostly by one enterprise, Mi-
crosoft,. However, Microsoft is no small business concern and holds firmly a huge
part of the microcomputer population, so DCOM has appeared 4 very serious com-
petitor to CORBA, DCOM was bundled with Windows NT 4.0 and there 15 a good
chanie 10 see DCOM in all forthcoming Microsoft products,

The distributed component object model, Microsoft's alternative to OMG's
CORBA, is an Internet and component strategy where ActiveX (formerly known
as object linking and embedding. or OLE) plays the role of DCOM object. DCOM
also is backed by a very efficient Web browser, the Microsoft Internet Explorer.

11.7 OBJECT-ORIENTED DATABASE MANAGEMENT SYSTEMS:
THE PURE WORLD

Database management systems have progressed from indexed files 1o network and
hierarchical database systems to relational systems. The requirements of traditional
business data processing applications are well met in functionality and perfor-
mance by relational database systems focused on the needs of business data pro-
cessing applications. However, as many researchers observed, they are inadequate
for a broader class of applications with unconventional and complex data type re-
guirements. These requirements along with the popularity of ohject-onented pro-
gramming have resulted in great demand foran object-oriented DBMS (OODEMS).
Therefore, the interest in OODBEMS initially stemmed from the data storage re-
quirements of design support applications (e.g., CAD, CASE, office information
systems).

The object-oriented database management system is a marriage of object-
oriented programming and database technology (see Figure |1-10) to provide
what we now call ebjecr-orienied darabases. Addivonally, object-onented data-
bases allow all the benefits of an object orientation as well as the ability to have a
strong equivalence with object-oriented programs, an equivalence that would be lost
if an-alternative were chosen, as with a purely relational database. By combining
object-oriented programming with database technology, we have an integrated ap-
pheation development system, a significant charactenistic of object-oriented data-
base technology. Many advantages aecrue from including the definition of operations
with the definition of data. First, the defined operations apply universally and are not
dependent on the particular ditabase application running at the moment. Second, the
data types can be extended to support complex data such as multimedia by defining
new object classes that have operations to support the new kinds of information,

CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 253

Ohject-oriented programming

Database capabilitics

FIGURE 11-10
The object-oriented database managemen! system is a marriage of object-orented program-
ming and database technalogy.

The “Object-Oriented Database System Manifesto” by Malcom Atkinson et al.
[2] described the necessary charactenistics that a system must satisfy to be con-
sidered an object-oriented database. These categories can be broadly divided into
object-oriented language properties and darabase requirements,

First, the rules that make it an object-oriented system are as follows:

1. The svstem must support complex objects. A system must provide simple
atomic types of objects (imegers, characters. etc.) from which complex objects
can be built by applying constructors to atomic objects or other complex
obiects or both.

2. Object identity must be supported. A data object must have an identity and ex-
istence independent of its values,

3. Objects must be encapsulared. An object must-encapsulare both a program and
its data. Encapsulation embodies the separation of interface and implementa-
tion and the need for modularity.

4. The system must support rypes or classes. The system must suppost either the
type concept (embodied by C+ +) or the class concept (embodied by Smalltalk).

5. The sysrem must support inheritance. Classes and types can participate in a
class hierarchy. The primary advantage of inheritance is that it factors out
shared code and interfaces.

254 PaRT FOUR: OBJECT-ORIENTED DESKGN

6. The system must avoid premarure binding. This feature also is known as lare
binding or dvinamic binding (see Chapter 2, which shows that the same method
name can be used in different classes). Since classes and types support en-
capsulation and inheritance; the system must resolve conflicts in operation
DAMES at run wme.

7. The svstem must be compurationally complete. Any computable function
should be expressible in the data manipulation language (DML) of the system,
thereby allowing expression of any type of operation.

8. The system miust be extensible. The user of the system should be able to cre-
aie new types that have equal stanis to the system’s predefined types.

These requirements are met by most modern object-oriented programming lan-
guages such as Smalltalk and C+ +. Also, clearly, these requirements are not mel
directly (more on this in the next section) by traditional relational, hierarchical, or
network database systems.

Second, these rules make it a DEMS:

9. It must be persistent, able to remember an object state. The system must
allow the programmer to have data survive beyond the execution of the creat-
ing process for it to be reused in another process.

10, It must be able to manage very large databases. The system must efficiently
manage access 10 the secondary storage and provide performance features,
such as indexing, clustering, buffering, and guery optimization.

11. It must accept concurrent users. The system must allow multiple concurrent
users and support the notions of atomic, serializable transactions.

12. It must be able to recover from hardware and software failures. The system
must be able to recover from software and hardware failures and retum to a
coherent state.

13. Dara query must be simple. The system must provide some high-level mech-
anism for ad-hoc browsing of the contents of the database. A graphical browser
might fulfill this requirement sufficiently.

These database requirements are met by the majority of existing database sys-
tems, From these two sets of definitions it can be argued that an OODBMS is a
DBMS with an underlying object-oriented model,

11.7.1 Object-Oriented Databases versus Traditional Databases
The scope of the responsibility of an OODBMS includes definition of the object
structures, object mampulation, and recovery, which is the ability to maintain data
integrity regardless of system, network, or media failure, Furthermore, OODBMSs
like DBMSs must allow for shanng; secure, concurrent multiuser access; and ef-
ficient, reliable system performance.

One obvious difference between the traditional and object-oriented databases 1s
derived from the W@Mﬁwﬁm objects and with itself. The
objects are an “active” component in an object-oriented database, in contrast 1o
conventional database systems, where records play a passive role. Yet another dis-
tinguishing feature of object-oriented database is inheritance. Relational database

CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 255

systems do not explicitly provide inheritance of attributes and methods. Object-
ariented databases, on the other hand, represent relationships explicitly, suppon-
ing both navigational and associative access to information. As the complexity of
interrelationships between information within the database increases, so do the ad-
vantages of representing relationships explicitly. Another benefit of using explicit
relationships is the improvement in data access performance over relational value-
based relationships.

Object-oriented databases also differ from the more traditional relational data-
bases in that they allow representation and storage of data in the form of objects. Each
abject has its own identity, or objeci-ID (as opposed to the purely value-oriented
approach of traditional databases). The object identity is independent of the state of
the object. For example, if one has a car object and we remodel the car and change
its appearance, the engine, the transmission, and the tires so that it looks entirely
different, it would sill be recognized as the same object we had originally. Within
an object-onented database, one always can ask whether this is the same object |
had previously, assuming one remembers the object’s identity. Object identity allows
objects to be related as well as shared within a distributed computing network.

All these advantages point to the application of object-oriented databases o in-
formation management problems that are characterized by the need to manage

* A large number of different data types.
* A large number of relationships between the objects.
* Objects with complex behaviors,

Application areas where this kind of complexity exists include engineering,
manufacturing, simulations, office automation, and large information systems
(“No More Fishing for Data” is a real-world example of this),

11.8 OBJECT-RELATIONAL SYSTEMS: THE PRACTICAL WORLD

in practice, even though many applications increasingly are developed in an object-
onented programming technology, chances are good that the data those applications
need to access live in a very different universe—a relational database. In such an
environment, the introduction of object-oriented development creates a fundamen-
tal mismatch between the programming model (objects) and the way in which ex-
isting data are stored (relational tables) [9].

To resolve the mismatch. a mapping tool between the application objects and
the relational data must be established. Creating an object model from an existing
relational database layout (schema) often is referred to as reverse engineering.
Conversely. creating a relational schema from an existing object model often is
referred to as forward engineering. In practice, over the life cycle of an applica-
tion, forward and reverse engineering need to be combined in an iterative process
1o maintain the relationship berween the object and relational data representations.

Tools that can be used to establish the object-relational mapping processes have
begun to emerge. The main process in relational and object integration is defining
the relationships between the table structures (represented as schemata) in the re-
lational database with classes (representing classes) in the object model. Eun’s Java

286 ©£uaT FOUR: ORIECT-ORIENTED DESIGN

. R A
I-lliL1Z'.' Jari

NO MORE FISHING FOR DATA

= B A & % 4
YR T s Beomids
|‘:_~w'." I:r On 1 KAOE |-||_!

Client/Server: With the help of a three-tier deci-
sion support system, a Canadian department
balts saimon spawning

Esther Shein

Tracking the spawning habits of salman using high
technology may sound like fishy business, but it's
mora important than you'd think—especially when
you're up against the whims of Mother MNature.

The huge amount of data that needed o be
tracked was daunting, according 1o lan Williams, a
senior biologist and head of the Fresh Water Habi-
tatz Science Group for the Department of Fisheries
(DHDF), in Manaimo, British Columbia. To make mal-
ters warse, differant groups within the DFO had
been creating independent databases focusing on
their area of interest. It was lime for some serlous
streamlining.

THREE-TIER TO RESCUE

The consolidation came in the form of the decision
support system, dubbed The Integrated Frasar
Salmon medel, which was built using Facet Deci-
sion Systems Inc's developmean! emvironment,
Facel's tool comprises middiewara for links to thind-
party databases; an object-orignted spreadsheet-
like development environment; and 3-0 visualization
tools. Facet's object-orlentad capabilities and ca-
pacity to accommodate ever-changing business
rules make it applicabla for any industry—for ex-
ampla, finance—that naeds 1o construct and ana-
Iyze large dala models. _

The Fraser Salmon modal was buill in threa lay-
ers: one for data access, one for data integration
and one to parlay the biclogist's rules which pro-
duces the technical results. DFO officials wantad all

the miscallaneous databases linked so employees
wiould have access lo the same Information—for ek-
ample, the number of fish caught in oceans and
rivers over & particular peried, the estimated space
still available for spawning and where forest fires oc-
cur. The top layar ol the system contains policy
analysis, which are togls to create and compars
scenarios “lo see technical impacts and transiale
them into the information: you need to make deci-
sions,” explains Scott Akenhead, vice president of
Business Development al Facal,

The model, which Akenhead iikens 1o a spread-
sheet, has ceills that are object-oriented in natirs, in
the form of graphics, maps or the links o the Ora-
cle data and rules written by a biclogisl.

The model difters from the typical data ware-
house, because of the use of advanced object-
oriented technology, which allows Facet to bulld a
much larger model. “We didn’t just assemble fthe
data and drop i in their laps. The data was analyzed
by the Facet system using rules-the biclogist pro-
vided” he explains.

“We found a way 1o make new object-criented
tachnology available to peopie who are not pro-
grammers,” Akenhead says,

Today, using map as the user interface, the DFG
has moved from raw digital map dala (a represen-
tation of & paper map on-screen) o 3-0 maps that
can be analyzed lo compare policy suggestions.
“We created river networks and drainage surfaces
from raw data, which are more useful to the biolo-
gist® because they do things the raw maps couldn't
do, such as simulate the fish swimming up the
streams, Akanhead says.

By Esther Shein, PC Week, Septemiber 23, 1586, Val. 13,
Murmber 38,

Blend is an example of such a tool. Java Blend allows the developer access to re-
lational data as Java objects, thus avoiding the mismatch between the relational
and object data models. Java Blend also has mapping capabilities to defingé Juva
classes from relational tables or relational tables from the Java classes [15].

11.8.1 Object-Relation Mapping

In a relational database, the schema is made up of tables, consisting of rows and
columns, where each column has a name and a simple data type. In an object

CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 25T

model, the counterpart to a table 1s a class (or classes), which has a set of anrib-
utes (properties or data members), Object classes describe behavior with methods.

A tuple (row) of a table contains data for a single entity that correlates to an
object (instance of a class) in an object-oriented system. In addition, a stored
procedure in a relational database may correlate to a method in an object-oriented
architecture. A stored procedure is a module of precompiled SQL code maintained
within the database that executes on the server to enforce rules the business has
set about the data, Therefore: the mappings essential to object and relational inte-
gration are between a table and a class, between columns and atributes, between
o row and an object, and between a stored procedure and a method.

For a ool 1o be able 1o define how relational data maps to-and from application
objects, it must have at least the following mapping capabilities (note all these are
two-way mappings. meaning they map from the relational system to the object and
from the object back to the relational system):

* Table-class mapping. _]'
= Table-multiple classes mapping.

= Table-inherited classes mapping.

= Tables-inhenited classes mapping.

Furthermore, in addition to mapping column values, the tool must be capable of
interpretation of relational foreign keys. The tool must describe both how the for-
gign key can be used to navigate among classes and instances in the mapped ob-
jeet model and how referential integrity 1s maintained. Referential integrity means
making sure that a dependent table’s foreign key contains a value that refers toan
existing valid tuple in another relation.

11.8.2 Table-Class Mapping

Table-class mapping isa simple one-to-one mapping of a table to a class and the
mapping of columns in a table to properties in a class. In this mapping, a single
table is mapped to a single class, as shown in Figure 11=11.

In such mapping. it is common to map all the columns to properties. However,
this 15 not required, and it may be more efficient to map only those columns for
which an object model is required by the application(s). With the table-class ap-

FIGURE 11-11
Table-class mapping. Each row in the table represents an object instance and each column in
the lable corasponds io an objsct atribute,

Car Table

cosk calar ke mode! Car

cnst
coler

¢ » make
o]

Tolie
yow
L‘:L[“ =

A ved
pe

(Lass
obieck
otk

258 PART FOUR; OBJECT-ORIENTED DESIGN

name | address | custiD | cmplD emplD

Customer

custdD

FIGURE 11-12

Table-multiple classes mapping. The custlD eclumn provides the discriminant. If the value for
custiD ks null, an Employea instance is created at un time; otherwise, 2 Customer instance is
created.

proach, each row in the table represents an object instance and each column in the
table corresponds to an object attribute, This one-to-one mapping of the table-class
approach provides a literal translation between a relational data representation and
an application object. It is appealing in its simplicity but offers little flexibility.

11.8.3 Table-Multipie Classes Mapping

In the table-multiple classes mapping, a single table maps to multiple noninherit-
ing classes. Two or more distinct, noninheriting classes have properties that are
mapped to columns in a single table. At run time, a mapped table row is accessed
as an instance of one of the classes, based on a column value in the table [11].

In Figure 11-12, the custiD column provides the discriminant. 1f the value for
custlD is null, an Employee instance is created at run time; otherwise, a Customer
instance is created,

11.8.4 Table-Inherited Classes Mapping

In table-inherited classes mapping, a single table maps to many classes that have
a common superclass. This mapping allows the user to specify the columns to be
shared among the related classes. The superclass may be either abstract or instan-
tiated. In Figure 11-13, instances of salarnedEmployee can be created for any row
in the Person table that has a non null value for the Salary column. If Salary is
null, the row is represented by an hourlyEmployee instance.

11.8.5 Tables-Inherited Classes Mapping

Another approach here is tables-inherited classes mapping, which allows the trans-
lation of is-a relationships that exist among tables in the relational schema into
class mheritance relationships in the object model. In a relational database, an is-a
relationship often 1s modeled by a primary key that acts as a foreign key to
another wable. In the object model, is-a is another term for an inheritance relation-

CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 259

Employes
nAmE
Person Table 0
address
name | address. | ssn | wage | salary
gy 7
Wage salary

FIGURE 11-13

Table-inherited classes mapping. Instances of SalaredEmploves can be created for any row in
the Parson table that has & non mull value for the salary column: If salary is null, Ih&rﬂwmer—
sasanted by an HourlyEmployes instance.

ship. By using the inheritance relationship in the object model, the mapping can
express a richer and clearer definition of the relationships than is possible in the
relational schema.

Figure 11-14 shows an example that maps a Person table to class Person and
then maps a related Employee table to class Employee, which isa subclass of class
Person. In this example, instances of Person are mapped directly from the Person
tzble. However, instances of Employee can be created only for the rows in the
Employee table (the joining of the Employee and Person tables on the SSN key).
Furthermore, SSN is used both as a primary key on the Person table for activating
instances of Person and as a foreign key on the Person table and a primary key on
the Employee table for activating instances of type Employee.

11.8.6 Keys for Instance Mavigation

In mapping columns to properties, the simplest approach is to translate a column’s
value into the corresponding class property value. There are two interpretations of
this mapping: Either the column is a data value or it defines a navigable relation-
ship between instances (i.., a foreign key). The mapping also should specify how
i convert each data value into a property value on an instance.

In addition to simple data conversion, mapping of column values defines the in-
terpretation of relational foreign keys. The mapping describes both how the for-
eign key can be used to navigate among classes and instances in the mapped ob-
ject model and how referential integrity is maintained. A foreign key defines a
relationship between tables in a relational database. In an object model. this asso-
ciation is where objects can have references to other objects that enable instance-
tp-1nstance navigation,

260 PiRT FOUR: OBIECT-ORIENTED DESIGN

Person Table

name |addregs: |- ssn
Person
KEDV
TR
address

Employer Table

onme | dept | ssn | salary 4 b ‘?

Employet Customer
dept COMpanY
salary

Customer Table
name | address | commpany

FIGURE 11-14

Tables-inherited classes mapping. Instances of Person are mapped directly from the Parson
table. However, instances of Employee can be created only for the rows in the Employse table
(the joining of he Employes and Person tablas on the ssn key). The ssn is used both as a pri-
mary key onthe Parson tabie and as a forsign key on the Person table and a primary key on
the Employes table for activating instances of type Employee.

In Figure 11-15, the departmentID property of Employee uses the foreign key
in column Employee.departmentID. Each Employee instance has a direct reference
of class Department (association) to the department object to which it belongs,

A popular mechanism in relational databases is the use of stored procedures. As
mentioned earlier, stored procedures are modules of precompiled SQL code stored
in the database that execute on the server to enforce rules the business has set about
the data. Mapping should support the use of stored procedures by allowing map-
ping of existing stored procedures 1o object methods.

11.9 MULTIDATABASE SYSTEMS

A different approach for integrating object-oriented applications with relational
data environments is multidatabase systems or heterogeneous database systems,
which facilitate the integration of heterogeneous databases and other information
sources.

CHAPTER 11: ACCESS LAYER: OBUECT STORAGE AND OBJECT INTEROPERABILITY 261

Department Table .l Employee Table l
name deparrmentIDy name | departmentID | ssn | salary
Diepartment Employes
nime fnme
department D saliry
£
FIGURE 11-15

lass instance relationship,

Heterogeneous information systems facilitate the integration of heterogeneous
information sources, where they can be structured (having regular schema), semi-
structured, and sometimes even unstructured. Some heterogeneous information
systems are constructed on a global schema over several databases. This way users
can have the benefits of a database with a schema (i.e.. uniform interfaces, such
as an SQL-style interface) to access data stored in different databases and cross-
database functionality. Such heterogeneous information systems are referred to as
Jederated multidatabase systems [9].

Federated multidatabase systems, as a general solution to the problem of inter-
operafifig heterogeneous data systems, provide uniform access to data stored in
multiple databases that involve several different data models, A multidatabase £ys-
tem (MDBS) is a database system that resides unobtrusively on top of, say, exist-
ing relational and object databases and file systems (called local database svstems)
and presents a single database illusion to its users (see Figure 11-16). In particu-
lar, an MDBS maintains a single global database schema against which its users
will issue queries and updates; an MDBS maintains only the global schema, and
the local database systems actually maintain all user data, The global schema is
constructed by consolidating (integrating) the schemata of the local databases: the
schematic differences (conflicts) among them are handled by neutralization (ho-
mogenization), the process of consolidating the local schemata.

The MDBS translates the global queries and updates for dispatch to the appro-
priate local database system for actual processing, merges the results from them,
and generates the final result for the user. Further, the MDBS coordinates the com-
mitting and aborting of global transactions by the local database systems thal
processed them to maintain the consistency of the data within the Jocal databases.
An MDBS actually controls multiple gateways (or drivers), It manages local data-
bases through the gateways, one gateway for each local database.

262 erRT FOUR: CRIECT-DRIENTED DESIGN

Application

FIGURE 11-16

A multidatabasae system (MDBS) Is a database system thal résides on top of, say exdsting reta-
tional and object databases and file systems (called local database systems) and presents a
gingle database ilusion to its usars. In other words, users are under an impression that they are
working with a single database.

To summarize the distinctive characteristics of multidatabase systems,

* Automatic generation of a unified global database schema from local databases,
in addition to schema capturing and mapping for local databases.

* Provision of cross-database functionality (global queries, updates, and transac-
tions) by using unified schemata,

* Integration of heterogeneous database systems with multiple databases.

* Integration of data types other than relational data through the use of such tools
as driver generators.

* Provision of a uniform but diverse set of interfaces (e.g., an SQL-style inter-
face, browsing tools, and C++) to access and manipulate data stored in local
databases [9).

11.9.1 Open Database Connectivity: Multidatabase Application
Programming Interfaces

The benefits of being able to port database applications by writing to an applica-
tion programming mterface (API) for a virtual DEMS are so appealing to software
developers that the computer industry recently introduced several multidatabase
APIs. Developers use these call-level interfaces for applications that access multi-
ple databases using a single zet of function calls, minimizing differences in appli-
cation source code [10]. Open database connectivity (ODBC) is an application pro-
gramming interface that provides solutions to the multidatabase programming

CHAPTER 11; ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILTY 263

problem. Initially proposed by Microsoft, ODBC provides a vendor-neutral mech-
anism for independently accessing multiple database hosts.

ODBC and the other APIs provide standard database access through a common
client-side interface. It thus allows software developers to write desktop applica-
tions without the burden of leamning mu]tipl: database APls. Another ODBC ad-
vantage is the ability to store data for various applications or data from different
sources in any database and transparently access or combine the data on an as-
needed basis. Details of the back-end data structure are hidden from the user.

As a standard, ODBC has strong industry suppart. Currently, a majority of soft-
ware and hardware vendors, including both Microsoft and Apple, have endorsed
ODBC as the database interoperability standard, In addition, most database ven-
dors either provide or will soon provide ODBC-compliant interfaces.

ODBC is conceptually similar to the Windows print model, where the applica-
tion developer writes fo a generic printer interface and a loadable driver maps that
logic to hardware-specific commands. This approach virtualizes the target printer
or DBMS because the person with the specialized knowledge to make the appli-
cation logic work with the printer or database is the driver developer and not the
application programmer. The application interacts with the ODBC driver manager,
which sends the application calls (such as SQL statements) to the database, The
driver manager loads and unloads drivers, performs status checks, and manages
multiple connections between ﬂppilcabuns and data sources (see Figure 11-17).

FIGURE 11-17
Open database connectivity (ODBC) provides a mechanism for cresting a virtual DEMS.

Application programs OEgC

Laadable ODBC driver

264 PART FOUR: OBJECT-ORIENTED DESIGH

11.10 DESIGNING ACCESS LAYER CLASSES

Now that we studied DBMS, client-server, distributed objects, OODBEMS rela-
tional-object systems, multidatabases, and other refated technologies, we have a
better appreciation for why we need an access layer.

The main idea behind creating an access layer is to create a set of classes that
know how to communicate with the place(s) where the data actually reside. Regard-
less of where the data actually reside; whether it be a file, relational database,
mainframe, Intemet, DCOM, or via ORB, the access classes must be able to translate
any data-related requests from the business layer inte the appropriate protocol for daia
access. Furthermore, these classes also must be.able to translate the data retrieved
back into the appropriate business objects. The access layer's main responsibility
is to provide a link between business or view objects and data storage. Three-layer
architecture, in essence, is similar to three-tier architecture. For example, the view
layer corresponds to the client tier, the business layer to the application server tier,
and the access layer to the database tier of three-tier architecture (see Figure 11-18),

The access layer performs two major tasks:

1. Translare the request. The access layer must be able to translate any data-
refated requests from the business layer into the appropriate protocol for data

FIGURE 11-18
The business layer objects and view layer uhfacts should not directiy socess the database. In-
stead, they should consult with the access layer far all external system connectivity.

DBMS server or
Legaey data and
] application

E g | - ﬂb

Clhient Clheny Chent

CHAFTER 11 ACCESS LAYER: OBJECT STORAGE AMD OBJECT INTERORERABILITY 265

gccess. (For example, if customer number 55552 needs to be retrieved, the ac-
cess layer must be able to create the comvect SQL statement and execute ir)

. Translare the results The access layer also must be able to transiate the data re-
irieved back into the appropriate business objects and pass those objects back
into the business laver.

1L

The main advantage of this approach is that the design is not tied to any data-
base engine or distributed object technology, such as CORBA or DCOM. With this
approach, we very easily can switch from one database to another with no major
changes to the user interface or business layer objects. All we need o change are
the access classes’ methods. Other benefits of dccess layer classes are these:

* Access layer classes provide ¢asy migration to emerging distributed object tech-
nology, such as CORBA and DCOM.

+ These classes should be able to address the (relatively) modest needs of two-tier
client-server architectures as well as the difficult demands of fine-grained, peer-
to-peer distributed object architectures:

Designing the access layer object is the same as for business layer objects and the
same guidelines apply to access layer classes, so we do not repeat them here (see
Chapter 10). However, we need to deal with the following fundamental questions:

* How do we decide what access layer objects to include?
* How doaccess layer objects fit with business layer (or view layer) objects? Or,
what is the relationship between a business class and its associated access class?

11.10.1 The Process

The access layer design process consists of the following activities (see Figures
[1-19 and 11-20). If a class interacts with a nonhuman actor, such as another sys-
iem, database. or the Web, then the class automatically should become an aceess
class. The process of creating an access class for the business classes we identi-
fied sio far follows:

L. For every business class identified, mirror the business elass package. For every
business class that has been identified and created, create one access class in
the access layer package. For example, if there are three business classes
(Class1, Class2, and Class3). create three access layer classes (Class1DB,
Class2DB, and Class3DB).

2. Define relationships. The same rule as applies among business class objects
also applies among access classes (see Chapter 8).

3. Simplify classes and relationships. The main goal here is 1o eliminate redun-
dant or unnecessary classes or structures. In most cases, you can combine sim-
ple access classes and simplify the super- and subclass structures.

X1, Redundant classes. If you have more than one class that provides similar
services (e.g., similar Translate request and Translare: results), simply se-
lect one and eliminate the other(s).

32. Method classes. Revisit the classes that consist of only one or two meth-
ods to see if they can be eliminated or combined with existing classes. If

266 PART FOUR: OBJECT-ORIENTED DESIGN

Mirror super-sub
relationships
Mt done

FIGURE 11-19
The procass of creating access layer classes.

you can find no class from the access layer package, select its associated
class from the business package and add the method(s) as a private
method(s) to it. In this case, we have created an access method.

4. lierate and refine.

In this process, the access layer classes are assumed (o store not only the at-

tributes but also the methods. This can done by utilizing an QODBMS or a rela-
tional database (as described in section 11.8.1).

Another approach is to let the methods be stored in a program (e.g., a compiled

C++ program stored on a file) and store only the persistent artributes. Here is the
modified process:

1.

21.

For every business class identified (see Figure 11-21), determing if the class has
persistent dara, An attribute can be either transient or persistent (nontransient),
An attribute is rransiént if the following condition exists; Temporary storage for
an expression evaluation or its value can be dynamically allocated. An atiribute
ig persistenr if the following condition exisis: Diata must exist between execu-
tions of a program or cutlive the program. If the method has any persistent at-
tributes, go 1o the next step (mirror the busingss class package); otherwise, the
class needs no associated access layer class.

Mirror the business class package. For every business class identified and cre-
ated, create one access class in the access layer package. For example, if there
are three business classes (Class1, Class2, and Class3), create three access layer
classes (Class1 DB, Class2DB, and Class3DB).

CHAPTER 11 ACCESS LAYER: OBJECT STORAGE AND DBJECT INTEROPERAEILITY 287

Step 1. Mirror bosiness class package

Business Access
layer layer
Class] Classi DB
—
Classd Class3 Class2DB Clrss3DE

Step 2. Define relationships among access lnyer class

Arcess
loyer
Class1 DB
| 1
ClassIDH Clpss3DB

Step 3. Simplify classes and relationships

Businesy . Acoeis
layer l layer !
Class] ClassIDB
| ‘?) [4‘ |

- .

Class? Classd Class2DB ass3nE”

P
A W

7 “

FIGURE 11-20
The process of creating access layer classes,

268 FART FOUR: ORJECT-ORIENTED DESIGN

W
Mot d ' H 1stent data
i Define. RERRER,
refafionships
i,
W

Normolize classes
and relationships

Done

FIGURE 11-21
The process of creating access layer classes. Storing only the persistent altributes.

3. Define relationships. The same rule as applies among business class objects
also applies among access classes (see Chapter B).

4. Simplify classes and relationships. The main goal here 15 to eliminate redun-
dant or unnecessary classes and structures. In most cases, you can combine sim-
ple access classes and simplify the super- and subclass structures.

4.1. Redundant classes. If you have more than one class that provides similar
services (e.g., similar Translate request and Translate results), simply se-
lect one and eliminate the other(s).

4.2. Method classes. Revisit the classes that consist of only one or two meth-
ods to see if they can be eliminated or combined with existing classes.

5. Iteratz-and refine.

In either case, once an access class has been defined, all you need do is make it
a-part-of its business class (see Figure 11-22).

Next, we apply this process to design the access layer classes for our bank sys-
tem application. To make the problem more interesting, we use a relational data-
base for storing the objecis and the second approach in designing its access layer
classes, assuming the methods will be stored in the program.

-

CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 269

Business class
Clagal

Access class
for Class]

ClazslDB

FIGURE 11-22
The ralation between a business class and its associated sccess class.

11.11 CASE STUDY: DESIGNING THE ACCESS LAYER FOR THE
VIANET BANK ATM

We are ready to develop the access layer for the ViaNet bank ATM. Remember
that the main idea behind an access layer is to create a set of classes that know
how to communicate with the data source. They are simply mediators between
business or view classes and storage places or they communicate with other ob-
jects over a network through the ORB/DCOM, in the case of distributed objects.

11.11.1 Creating an Access Class for the BankClient Class

Here, we apply the access layer design process 1o identify the access classes,
Step 1. Determine if a class has persistent data.

Step 2. Mirror the business class package. Since the BankClient has persistent at-

tributes, we need to create an access class for it
Step 3. Define relationships.

TheBankClient class has the following attributes (see Chapter 10):

firsiName
lastMame
cardNumber
pinNumber
dccount

The firstName. lastName, cardNumber, and pinNumber are persistent attributes,
and account is used to link (or implement the association among) the BankClient
and Account classes. To link the BankClient table to the Account table we need to
use the card number (cardNumber) as a primary key in both tables (see Figure 11-23),

270 paRT FOUR: OBJECT-DRIENTED DESIGM

BANKCLIENT Tabbe l l ACCOUNT Table
firstMame | lnsthame | cardNumber | pinMomber cardNuenbes
BankClient Account
firstname number
Insiname balance
cardMumber bankClient
pinMumber
A socount /, ransaction

S el

FIGURE 11-23 N

The cardMumber cofumn facilitates the link between the BANKCLIENT and ACCOUNT tables. It
also Implements the aseceiation among the BankChent and Account clagszes. Mote that the card-
Mumber is a primary key for the ACCOUNT and BANKCLIENT tables,

Here we decided to create an access class instead of creating access method
within the BankClient class. Let us call our access class BankDB. The purpase of
this class is 1o save the state of the BankClient objects. In other words, 1t must up-
date and retrieve the BankClient atiributes by translating any data-related requests
from the BankClient class into the appropriate protocol for data access.

Notice that retrieveClient method of BankClient object simply sends a message
to the BankDB object to get the client information:

Listing 1.

BankClienr: :+retrieveClient (aCardfumber, aPIN): BankClient
aBankDB : BankDB
aBankDB.retrievellient (afardfumber, aPIN)

In here, all we need to do is to create an instance of the access class BankDB
and then send a message to it to get information on the client object. The re-
trieveClient of the BankDB class will do the actual work of getting the informa-
tion from the database. Let us assume our database is relational and we are using
SQL:

CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 271

Listing 2.
ZarkDE: i +retrieveClisnt (aCardiumber, APTN): BankClient
sELECT firstName, lastHame
FRCM BANECLIENT
WHERE wardiurber = aCardnumber and pinthumber =apin)

The retrieveClient return type is defined as BankClient to return the attributes of
the BankClient. Access class methods (as you might guess) are highly language
dependent. Remember that in actuality, during design, you have to select your im-
plementation language. Since implementation is beyond the scope of this book and
10 keep the description language independent, the implementation details have
neen skipped for the most part. A return of null means that the supplied PIN num-
ber is not valid,

The updateCliens method updates or changes attributes such as pinNumber,
firstName, or lastName. Here again, just like the retrieveClienr method, the
BankClient::updateClient sends a message to the access class BankDB::update-
Client to update client information;

Listing 3.
S=nklB: c+updateClient (aClient: BankClient, aCard¥umber: String)
UPOATE BANKCLIENT
SET firstHame = aClient.firstiame
SET lastiiame =aClient.lastName
SET pinNumber = aClient .pirNumber
WHERE ‘cardiumber = aCardnumber)

The Account class has the following attributes {see Chapter 10):

number
halanr_:_e
bankClient
transaction

Attributes such as number and balance are persistent. The bankClient attribute is
transient and is used for implementing the association between the Account and
BankClient classes. We already have taken care of this link by adding cardNumber
1o the Account table. However, to link the Account table to the Transaction table, we
need to add the rransiD as a foreign key to the Account table (see Figure 11-24).

Figure 11-25 shows how generalization relationships among the Account,
CheckingAccount, and SavingsAccount classes have been represented in our rela-
uonal database. Here, since we are using a relational database that provides no in-
heritance or super-sub generalization, we added four columns to the Account table:
one for the savings account number (sNumber), one for the checking account
number (eNumber), one for the savings balance (sBalance). and finally one for the
checking balance (cBalance).

According to step 2, we need to add three more access classes: one for the
Account class (AccountDB), one for the CheckingAccount class (CheckingAc-
coumDB), and one for the SavingsAccount class (SavingsAccountDB). However,
al this point, we realize that we need an access class with only four methods, two

272 PaRT FOUR: OBJECT-ORIENTED DESIGN

transI) | transDaie | transTime | ransType | amount | postBalance

TRANSACTION Table
| ' '
firstName { lastiome | cardMNumber | pinNumber candMumber trangl Dy
BANKCLIENT Table ACCOQUNT Table
Transaction
: transilr
BankClient Account transDiate
firstmmme nimber tranisTime
]M IEEI'I'iT}'PE
eardMumber Balince AUt
pinilumber bunkClizm posiBalance
agcant /'u-unum:lnn 4—\/» BOCOIANT
cardMNumber rransID

FIGURE 11-24
To represent the association Getwesn the ACCOUNT and TRANSACTION taties, we need 1o
add transiD to the ACCOUNT table as a foreign key,

methods for SavingsAccount (update and retrieve) and two methods for
CheckingAccount. The Account class is an abstract class (has no instances since
the accounts are either savings or checking accounts) and therefore needs no ad-

ditional methods. The methods are
updateSavingsAccount
retrieveSavingsAccount
ipdareChéckingAccount
refrieveCheckingAccount

CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILITY 273

eransiD | rransDate | ransTime | mansType | amount | postBalance
TRANSACTION Table
v ! '
firstName | last™ame | cardMumber | pinMumber cardMumber | sMumber | cMumber | ransID | sBalance | cBalance
BANKCLIENT Table ACCOUNT Table
Transaction
i
BunkClhient Mecoumn ";:I;;:Eg
firsiname nimbar transTime
lastname rans Type
cardMumber halanice famount
pinfumber bankClizm postBalance
W account /’ transaction «§— = BCCOURL
cardNurmber ‘T
CheckingAccouni SavingsAccount
RAVINES checking

FIGURE 11-25

Four columns are added ta the ACCOUNT table: one for the savings account number (ENUm-
bevl, one for the checking account numbar {eNumbar), one for the savings balance (sBalamcs),
and one for the checking balance (cBalance). Instances of SavingsAccount and Checkingsc-
count can’ be created for any row in the ACCOUMT table that has a non nul value for shitmbar

ar eNumber

274 PuRT FOUR: OBJECT-DRIENTED DESIGN

The previous section explained that method classes are classes that consist of only
one or two methods, and it is a good idea to combine method classes with exist-
ing access clagses if it makes sense to do so. If you can find no class from the ac-
cess layer package, select its associated class from the business package and cre-
ate a private method(s) and add the methods to it. However, here, we add the
methods to the BankDB class. Afier all, an Account is associated with a BankClient
class and most times account and client information need to be accessed at the
same time, Here SavingsAccouns; retrieveAccount and SavingsAccount;:updareAe-
count methods send messages to the access class BankDB: retrieveSavingsAccount
and BankDB: updareSavingsAceount methods to perform the job. The CheckingAc-
count is similar (see Listings 6 and 10).

You might be wondering why SavingsAccount::refrieveAccount needs (o use the
BankDB:: retrieveSavingsAceount to perform the job. Why does it not do the job
itself? Well, SavingsAccount: retrieveAccount can perform this operation without
calling the access class. However, if you need to switch to a different database,
you must modify the method. Therefore, if you want to create an access method,
make sure to make its protocol private so the impact on other classes will be min-
imal. For most cases. it is possible to use the access class instead of creating pri-
vate access methods,

The following listing depicts the implementations of these methods:

Listing 4.
SavingsAccount : s =ratrisvelocsunt () : Aocount
bankDB, retrieveSsvingshcoount [(bankClient.cardiumber, number)

The retrieveAccount 1s an example of polymorphism (in which the same oper-
ation may behave differently on different classes), where it is overloading its su-
perclass method by sending a message to the access class BankDBE object to re-
trieve the savings account information. The same mechanism has been used to
invoke other access class methods:

Listing 5.
BankfB:: +retrieveSavingsiccount (aCardiumber: String, savingsiumber:
String) : Account
SELECT sBalance, transID,
FROM ACCOUNT
WHERE cardihumber = aCardiumber and sumber = savingsiumber |

Listing 6.
Checkinghcoount : ; —retrievefocount () : Account
bankDE. retrieveCheckinghocdunt (bankClient . cardiumber, number)

Listing 7.

BankDB: : +retrievelCheckingAccount (aCardiumber: String, checkingiumber :
String): Acoount

SELECT cBalance, transiD,

FROW ACCOUNT
WHERE cardiumber = aCardiiumber and chumber = checkinghumber |

CHAPTER 11: ACCESS LAYER: DBIECT STORAGE AND OBJECT INTERODPERABILITY 275

Listing 8.
=avingsAccount ; ; —updateAccount () : Account
=k updateSavingsAicoount (bankClient . cardiumber , number, balance)

Listing 9.

ZankDE: : +updateSavingaiocount (aCardPinNumber: String, alumber: String
cawBalance: float)

JEDATE - ACCOUNT

Set sHalance = nswHalance)
WHERE cardhumber = aCardiumber and shumber = alumber)

Listing 10.
Chackingiocount : : =updateiocount (§ 1 ACocount
berkl8. updateCheckingfccount (bankClient , cardiumber, number, balance)

Listing 11.
zankDB: r+updataCheckinghccount (aCardPinNumber: String, aNumber:
stringnewBalance: flocat)
JFDATE - ACCOUNT
Set cBalance = newBalance
WHERE cardiumber = aCardiumber and chumber = aNumar)

Figure 11-26 depicts the relationships among the classes we have designed so
far, especially the relationships among the aceess class and other business classes.
Designing an access class for the Transaction class is left as an exercise; see prob-
lemn 1.

11.12 SUMMARY

A database management system (DBMS) is a collection of related data and asso-
ciated programs that access, manipulate, protect, and manage data. The funda-
mental purpose of a DBMS is to provide a reliable persistent data storage facility
and the mechanisms for efficient, convenient data access and retrieval,

Many modem databases are distributed databases, This implies that portions of
the database reside on different nodes (computers) and disk drives in the network.
Usually, each portion of the database is managed by a server, a process responsi-
ble for controlling access and retrieval of data from the database portion. The
server dispenses information to client applications and makes queries or data re-
quests to the servers. Clients generally reside on nodes in the network other than
those on which the servers execute,

Client-server computing is the logical extension of modular programming. The
fundamental assumption of modular programming is that separation of a large
piece of software into its constituent parts (“modules”) creates the possibility for
easier development and better maintainability.

Distributed computing is poised for a second client-server revolution, a transi-
ton to an immensely expanded client-server era. In this new client-server model,
servers are plentiful instead of scarce (because every client can be a server) and

276 PuAT FOUR: OBIECT-ORIENTED DESIGN

| Business classes
Bank
o
O
EankClient
#firstName : Stmng
#lastMome : String ATMMachine
#cardMumber 7 String n
i i = gpo——o Haddress : String
#mem'ﬂ_ﬁ =Sieing M state : Smng
#ooccount ; Acoount
FhankDB: BunkDBE
+verfyPassword()
T Haz | |
1.2
Accaunt .
. ¥number © Sng Transaction
Avcess classies) I #balance ; float #translD ; String
itbankClient: BankClient Accouiil- MiransDate ; Dige
BankDYB fransaction: Transaction | * Trapsactan #rransTime | Time
#hankDB: Rank DB #iransType : String
< +deposit) ! Hamount foat
+withdraw| #pastBalance ; fiow
7= Mereate Transaction(1) faccount : Account
& m:gll_l-nn![(: NretrieveAccountl)
HemneveSavingsAccount) Hupdite Accounti)
supdateSivingsAccount()
+remeveCheckingAccount)
+updmeChécking Account() I
CheckingAccount || é‘::;f:; SavingsAccount
#aavitigs | Agoount 1 Achacking . Account
“withdrawi) —retrigve Account])
—Tetreve Account) —update Account()
= updateAccounti)
FIGURE 11-26

A still more complete UML class diagram of tha ViaNet Bank ATM system, |t shows the relation-
ship of the new actass ciass (BankDB) with the Account and BankClient business classas. Note
the addition of the bankDE attributes 1o the Account and BankClient classes and addition of four
new private methods to checkinoAccount and SavingsAccoun! classes,

proximity no longer matters. The new generation of the client-server model
is made possible by the recent exponential network growth and the progress in
network-aware multithreaded desktop operating systems.

The object-oriented database technology is a marriage of object-oriented pro-
gramming and database technology. The programming and database come together
to provide what we call ebjecr-oriented databases. By combining object-oriented

CHAPTER 11! ACCESS LAYER: DBIECT STORAGE AND OBJECT INTERCPERABILITY 277

programming with database technology, we have an integrated application devel-
cpment system, a significant characteristic of object-ariented database technology,
“The Object-Oriented Database Systém Manifesto” by Malcom Atkinson et al,
describes the necessary characteristics a system must satisfy to be considered an
object-oriented database. These categories can be broadly divided into object-
oriented language properties and database requirements,

In practice, even though many applications increasingly are developed using
object-oriented programming technology, chances are good that the data those ap-
plications need to access live in a very different universe—a relational database,
To resolve such a mismatch, the application objects and the relational data must
5e mapped. Tools that can be used to establish the object-relational mapping
processes have begun to emerge. The main process in relational-object integration
i« defining the relationships between the fable structures (represented as schemata)
i the relational database with classes (representing classes) in the object model.

A different approach for integrating object-oriented applications with relational
data environments involves multidatabase systems or heterogeneous database sys-
tems, which facilitate the integration of héterogeneous databases and other infor-
muation sources,

The main idea behind an access layer is to create 1 set of classes that know how
to communicate with a data source. Regardless of whether the data actually are in
1 file, relational database, mainframe. or Internet, the access classes must be able
w0 translate data-related requests from the business layer into the appropriate pro-
tocol for data access, Access layer classes provide easy migration to emerging dis-
iributed object technology, such as CORBA and DCOM. Furthermare, they should
be able to address the (relatively) modest needs of two-tier client-sérver architec-
tures as well as the difficult demands of fine-grained, peer-to-peer distributed ob-
et architectures,

KEY TERMS

Abort (p. 244)

Alomic type of objects (p, 253)

Atomicity (p. 244)

Commit (p. 244)

Commeon object request broker architecture (CORBA) (p. 251)
Data definition language (DDL) (p. 242)

Data manipulation language (DML) (p. 242)

Database management system (DBMS) (p. 237)
Distributed component object model (DCOM) (p. 252)
Distributed database (p. 245)

Distributed object computing (DOC) (p. 250)

Foreign key (p. 241)

Forward engineering (p. 255)

Homogenization (p. 261)

Meta-data (p. 239)

278 pPanT FOUR: OBJECT-ORIENTED DESIGN

Multidatabase system (MDBS) (p. 261)
MNeutralization (p. 261)

Object management group (OMG) (p. 251) _
Object-oriented database management system (QODBMS) (p. 252)
Object request broker (ORB) (p. 251)

Persistence (p. 237)

Primary key (p. 241)

Referential integrity (p. 257)

Reverse engineenng (p. 255)

Schema (p. 239)

Stored procedure (p. 257)

Structured query language (SQL) (p. 243)
Transaction (p. 244}

Tuples (p. 241)

REVIEW QUESTIONS

1. How do vou distinguish transient data from persistent data?
2. What is 2 DEMS?
3. Is a persistent object the same as a DBMS? What arc the differences?
4. What i a relational database? Explain tuple, primary key. and foreign key,
5. What is a database schema? What is the difference between a schema and mieta-data?
6. What is a DDL?
7. What 3 distributed database?
8. What is concurrency contral?
9. What is shareability?
10. What is a transaction?
11. What is a concurrency policy?
12. What is & query?
13. Describe client-server computing.
14, What are different types of servers? Briefly deseribe each.
15, Why do you think DOC is so important in the computing world?
16, Describe CORBA, ORB, ind DCOM,
I7. What is an QODBMS? Degcribe the differences bérween an OODBEMS and objecy-
oriented programming,
18, Deseribe the necessary characteristics that o system must satisfy o be considered -an
object-onented database,
19, Descrbe reverse and forward engineening.
20. Describe a federated multidatabase system,
21. Describe the process of creating the access layer classes.

PROBLEMS

1. Design an access class for the Transaction class of the bank system. Try both alterna-
tives and write a paragraph pro or con for each design, (Design it once us un access class,
the second time as access methods. Compare these approaches and report on their sim-
ilarities and differences.)

CHAPTER 11: ACCESS LAYER: OBJECT STORAGE AND OBJECT INTEROPERABILTY 279

2. Consult the WWW to obtain information on DOC, especially comparing CORBA with
DCOM. Write a research paper based on your findings.

3. Consult the WWW to obtain information on the object-relational systems and tools. Se-
lect one of the development tools, and write on your rationale for selecting that 1ool.

4. Consult the WWW (o obtain information on OODBMS vendors, Select one of the de-
velopment tools and write on your rationale for selecting that tool.

5, Consult the WWW or the library 1o obtain an article on objected-oriented DML and
query languages. Write a paper based on your findings.

6. Consult the WWW or the library to obtain an article on the Web objects. Write a paper
based on your findings.

7. Conzult the WWW or the library to obtain an article on ActiveX. Write & paper baged
on your findings.

8. Some developments in 5CL technology involve the integration of object-oriented feaiures
into mainstream commercial databases. Despite the growing number of object databases
available 1oday, there is no commercial SQL standard to create and access objects stored
in such databases. OQL (object query language) and SQL3 are two separate but over-
lapping efforts to merge object database technology with standardized, néxt-generation
guery fanguages. Do research to find out more about SQL3 and OQL.

9, The ViaNet bank sysiem wants to go on-line and create on-line banking, where cus=
tomers can be connected elecironically to the bank through the Internet and should be
able 1o conduct almost the same banking transactions as they would with a regular ATM
maching. The only variation from previous requirements is that they cannot withdraw
cash from the ATM machine, but instead they can write electronic checks w'a payee,
Design thie architecture for the on-line banking of the ViaNet bank.

L. Atkinson, M. P; Bailey, P. J.; Chrishalm, K. J.; Cockshott, W, P.; and Morrison, R.
“An Approach to Persizstent Programming” Compurer Journal 26, no. 4 (1983,
pp. 360-65.

. Atkinson, M.; Bancilhon, F.; DeWilt, D; Diurich. K: Maier. D.; and Zdonik. “The
Object-Oriented Database System Manifesto.” In Proceedings of the. First International
Conference on Deductive and Objeci-Oriented Databases, Kyoto, Japan, December
1989, pp. 22340,

. Berson, Alex. ClientServer Architécrure. New York: McGraw-Hill, 1992

. Brown, A. L.; and Morrison, R. "A Generic Persistent Object Store.” Software Engi.
neering Jounal 7, no. 2 (1992), pp. 161-68.

5. Dinrich, Klaus R, “Object-Oriented Database Systems: The Notion and lssues.” Pro-
ceedings of the 1986 [EEE Inernational Workshop on Object-Oriented Database
Systems,

6. Kalakota, Ravi, comp.client-server FAQ), 1996,

7. Kalakota, Ravi; and Whinston, Andrew. The Frontfers of Electronic Comimerce. Reading,
MA: Addison-Wesley, 1995,

8. Kim, Won. Objecr-Oriented Database, Cambndge, MA: Massachusetis Institute of
Technology Press, 1990,

9. Lee, Juhnyoung: and Forslund, David, “Coexizstence of Relations and Objects in Dis-
tributed Object Computing.” White paper, Sunrse (July 26, 1995},

100 Morh, Ken. “"Understanding Multidatabase APls and ODBC." DEMS (June 1994).

B2

A Lad

28B0 ear7T FOUR: OBJECT-ORIENTED DESIGN

L
1z
13:

14.
i5.

ONTOS, Inc. "Object/Relationsl Integration: How to Use Objects (o Enhance Your
Relational Data,” White paper, 1998,

Rob, Peter; and Coronel, Carlos, Darobase Svsremy— Désign, Impleméntation, and
Management, 2d ed. Bélmont, CA: Wadsworth Publishing Company, 1997,
Robertson-Dunn, Bernard, comp.client-server FAQ, 1996,

Tavlor, Lloyd. comp.client-server FAQ, 1996,

White, Ser; Cattell, Rick; and Finkelstein, Shel., “Enterprise Juva Platform Data Ac-
cess” Proceedings of ACM SIGMOD International Conference on Mandgement of
Data 27, no. 2 (June 1998).

CHAPTER 12

View Layer: Designing
Interface Objects

Chapter Objectives

You should be able to define and undérstand
» ldeniifying view classes.

* Designing imerface objects,

12.1 INTRODUCTION
Once the analysis is complete (and sometimes concurrently), we can start design-

ing the user interfaces for the objects and detl:rmmmg how these objects are to be

presented. The 1 main goal of a user interface (Ul) is to display and obtain needed

information in an accessible, efficient manner. The design of the software's inter-
face, more than anything else, affects how a user interacts and therefore experi-
ences an application [5]. It is important for a design to provide users the informa-
tion they need and clearly tell them how to successfully complete a task. A
well-designed Ul has visual appeal that motivates users 10 use your apphcnnnn In
addition, it should use the limited screen space el‘ﬁcmntly

In this chapter; we learn how to design the view layver by mapping the Ul
objects 1o the view layer objects, we look at Ul design rules based on the design
corollaries, and finally, we look at the guidelines for developing a graphical user
interface, A graphical user interface (GUL) uses icons to represent objects, a
pointing device to select operations, and graphic imagery to represent relation-
ships. See Appendix B for a review of Windows and graphical user interface ba-
sios and treatments.

12.2 USER INTERFACE DESIGN AS A CREATIVE PROCESS

Creative thinking is not confined to a particular field or a few individuals but is
possessed in varying degrees by people in many occupations: The artist sketches,
the journalist promotes an idea, the teacher encourages student development, the

281

282 rFoRT FOUR: OBIECT-ORIENTED DESIGN

Real-World Issues on Agenda

TOWARD AN OBJECT-ORIENTED USER INTERFACE

In the mid-1880s, mainstream PC softwara devel-
opers started making the move fram character-
based user interfaces such as DOS to graphical
user interfaces (GLIs). We now face the next major
shift in U design, from GUI to OOUl (object-
oriented user interface).’ Like the last soffware de-
sign transition, the move to GOUI requires some
rethinking abowtl how to design software, not enly
from the development side bul also from the human
computer inferface side.

Why abjects? Tandy Trower, direcior of the Ad-
vanced User Interface group at Microsolt explains
that using objects to express an intarface is'a nat-
ural choice because we interact with our environ-
ment largely through the manipulation of objecs.
Objects also allow the definition of a simple, com-
man sat of interactive conventions that can be ap-
plied consistently across the interface, For example,
an object has properties; characleristics, or atirib-
utes that define ils appearance or state, such as iis
color or size; Because objects, as large as a file or
as small a5 a single character, can have properties,
viewing and editing those properties can be gener-
alized across the interdace [5].

An object-oriented user interface focuses on
objects, the “things" people use to accomplish thelr
wark, Users see and manipulate object representa-
tions of thelr information. Each different kind of ob-
ject supports actions appropriate for the Infarmation
it represents. Typical users need not be aware of
computer programs and underlying computer tech-
nology [2].

While many of the concepls-are similar, object-
oriented programming (OOP) and object-oriented
user inferlaces are nol the same thing. Simply us-

ing an object-oriented language does not guarantes
an O0UI; as a matter of fact, you need not use an
object-oriented language to create an OOUI, but it
helps. Because the concepts involved are similar,
the two disciplines can be used in a complementary
relationship. The primary distinction 1o keep in mind
i& that QOUI design concentrales on the objects
perceived by users, and object-oriented program-
ming facuses on implementation details, which of-
{en need to be hidden from the user,

An DOU| allows 2 user o focus on objects and
woark with them directly, which more closely reflects
the user's view of doing work. This is in contrast to
the traditional application-criented or current graph-
leal user interfaces, where users must find a pro-
gram appropriate for both the task they want to per-
form and the type of information they want to use,
siart the program, then use soma mechanism pro-
vided by the program, such as an Open dialog, fo
locate their information and use it

00Ul UNDER THE MICROSCOPE

An object-oriented user interface allows organizing
objeciz in the computer environmant similarly to
how we organize objects in the real world, Wa can
keap objects used in mamy tasks ina comman, con-
venlent place and objects used for specific tagks in
maore specific places:

Ul objects typlcally are représented on a user's
goreen as icons, loons are small graphic images:
that help & user identify an object. They typically
consist of a picture that conveys the object's class
and a text title that Identifies the specilic objscl
lcons are intendad to provide a concise, easy-to-
manipulate representation of an object regardless

scientist develops a theory, the manager implements a new strategy, and the pro-
grammer develops a new software system or improves an existing system o create
a hetter one.

Creativity implies newness, but often it is concerned with the improvement of
old products as much as with the creation of a new one. For example, newly cre-
ated software must be useful, it should be of benefit to people. yet should not be
so much of an innovation that others will not use it. A “how 1o make something
better” attitude, tempered with good judgment, is an essential characteristic of an
effective, creative process.

CHAPTER 12. VIEW LAYER: DESIGNING INTERFACE cRuECcTs 283

BOX 12.1 [CONTINUED)

of how much additional information the object may
contain. If desired, we can "open” an icon to see.an-
other view with this additional Information. We can
pardorm sictions on icons wsing various lechnigues,
such as point selecting, choosing an action from &
manu, of dragging and dropping. lcons halp depict
the class of an object by providing a pictorial repre-
sentation, For example, consider Windows 98 or its
predecessor Windows 85, where you can click the
right mouse button while selecting any object (lcon)
on the deskiop, which will result in & menu popping
up that gives access to the icon's propernties and the
operations possible on the icen.

Although we create apd manipulate objects,
many pecple never need 1o ba consciously aware of
the ciass to which an object belongs. For example,
& person approaching a recliner need not stop and
think, “This |s a sofa, which belongs to the class
chair. Therefore, | can sit on it” Likewise, & user
can work with charts and come to expect that all
charts will behave in the same way without caring
thal the charts are a subclass of the dala object
class,

Ul classes also are very useful 1o you when de-
signing an interface, because they force us to think
about making clear distinctions among the classes
of objects that should be provided the user, Classes
must be carefully defined with respect 1o tasks and
distinctions that users currently understand and that
are useful, When Ihe Ul classes are carefully de-
fined, these distinctions make It easy for users fo
Il2arm the rode of an object in perorming thelr 1asks
and to predict how an abject will behave.

In Chapter 2, we saw that most objects—excepi
the most basic ones—are composed of and may
confain other objects, For example, a spreadsheal
is an object composed of celis, and cslls ame objects
that may contain text, mathematical formulas, video,
and =o forth. Breaking down such objedcts inte the

objacts fram which they are composead is decompo-
sitien. The depth to which object decomposition
should be supported in the Interface depends en-
tirely on what a user finds useful in performing a
particular task. A user writing a report, for example,
probably would not be intaresied in dealing with ob-
jects smaller than characters, so In this tagk chas-
acters would be elemental objects. However, a user
creating or editing a character font might need to
manipuiate Individual pixels or strokes. In this task,
characters would be composed of pixels or strokes,
and therafore a charecter would not be an elemen-
tal object

WHY oou?

An OOUI lessans the need for users to be aware of
the programming providing the funcfions {hey em-
ploy. Instead, they can concentrate on locating the
objects nesded to-accomplish their task and on par-
forming actions on those objects. The aspects of
startiriq and running programs are hidden to all but
thosa users who wanl to be awars of them. A user
should need to know only which chjects are required
fo compiefe the task and how fo use those objects
to achieve thé desired resull [2). The learning
process is further simplified because the user has
1o deal with enly one process, viewing an object, as
opposed to starting an application, then finding and
opening or creating a file. Although this is the main
objactive of OOUI, we are a few years away from
completely achieving the goal. However, & computar
is a togl, and as with any other fool, it has to be
leamed to be used effectively. Therefore, whan you
can help a usar by simplitying the process of leam-
ing fo use a fool, you should do so.

' However, currantly wi are in a trRnsitioh phase bebween
GEUI and QO

By bringing together, in the mind, various combinations of known objects or

situations, we are using inventive imagination to develop new products, systems,
or designs. It is not necessary 1o visualize absolutely new objects or to go beyond
the bounds of our own experience. Inventive imagination can take place simply by
putting together known materials (objects) in a new way, Therefore, a developer
might conceive new software by using inventive imagination to combine objects
already in his or her mind to satisfy user needs and requirements. As an example
of this, see the Real-World lssues on Agenda “Toward an Object-Onented User
Interface.”

28B4 PuRT FOUR: OBJECT-ORIENTED DESIGN

Is creative ability bom in an individual or can someone develop this ability?
Both parts of this question can be answered in the affirmative. Certainly, some peo-
ple are born with more creativity than others, just as certain people are born with
betier skills (athletes, artisis, efc) in some areas, than others; Just as it 15 possible
to develop mental and physical skills through study and practice, it is possible to
develop and improve one’s creative ability.

To view user interface design as 4 creative process, it is necessary (o understand
what the creative process really involves. The creative process, in part, 15 a com-
bination of the following:

I. A curious and imaginative mind.

2. A broad background and fundamental knowledge of existing tools and methods.

3. An enthusiastic desire to do a complete and thorough job of discovering solu-
tions once a problem has been defined.

4. Being able to deal with uncertainty and ambiguity and to defer prematute closure.

One aid to development or restoration of curiosity is to train yourself to be
observant. You must be observant of any software that you are using. You must ask
how or from what objects or components the user interface 15 made, how satisfied
the users are with the UL, why it was designed using particular controls, why and
how it was developed as it was, and how much it costs. These observations lead
thie creative thinker to see ways in which software can be improved or 1o devise a
better component to take its place.

12.3 DESIGNING VIEW LAYER CLASSES

An implicit benefit of three-layer architecture and separation of the view layer
from the business and access layers is that, when vou design the Ul objects, you
have to think more explicitly about distinctions between objects that are useful to
users. A distinguishing characteristic of view layer objects or interface objects is
that they are (he only exposed objects of an application with which users can in-
teract. After all, view laver classes or interface objects are objects that represent
the set of operations in the business that users must perform to complete their
tasks, ideally in a way they find natural, easy to remember. and useful. Any ob-
jects that have direct contact with the outside world are visible in interface objects.
whereas business or access objects are more independent of their environment.

As explained in Chapter 4, the view layer objects are responsible for two major
aspects of the applications:

1. Input—responding te user interaction. The user interface must be designed 1o
translate an action by the user, such as clicking on a button or selecting from a
menu, into an appropriate response. That response may be 1o open or close
another interface or to send a message down into the business layer to start
some business process. Remember, the business logic does not exist here, just
the knowledge of which message to send 1o which business object.

2. Quipwi—displaying or printing business objects. This layer must paint the best
picture possible of the business objects for the user. In one interface, this may

CHAPTER 12; VIEW LAYER: DESIGNING INTEREACE OBUECTS 285

mean entry fields and list boxes to display an order and its items. In another, it
may be a graph of the total price of a customer’s orders.

The process of designing view layer classes is divided into four major activities:

L. The macro level UT design process—identifying view laver objects. This activ-
ity, for the most part, takes place during the analysis phase of system develop-
ment. The main objective of the macro process is g;_j_\mmwh
act with human actors by analyzing the use cases developed in the analysis
phase. As described in previous chapiers, each use case involves actors and the
task they want the system to do. These use cases should capture a complete,
unambiguous, and consistent picture of the interface requirements of the §ys-
tem. After all, use cases concentrale on describing what the system does rather
than how it does it by separating the behavior of a system from the way it is
implemented, which requires viewing the system from the user’s perspective
rather than that of the machine. However, in this phase, we also need to address
the issue of how the interface must be implemented. Sequence or collaboration
diagrams can help by allowing us to zoom in on the actor-system interaction
and extrapolate interface classes that interact with human actors; thus, assisting
us mn identifying and gathering the requirements for the view laver objects and
designing them.

Micre level Ul design activities:

2.1 Designing the view layer objects by applving design axioms and corollar-
ies. In designing view layer objects, decide how to use and extend the com-
ponents so they best support application-specific functions and provide the
most usable interface.

2.1 Prototyping the view laver interface: After defining a design model, prepare
a prototype of some of the basic aspects of the design, Prototyping is par-
ticularly useful early in the design process.

X Testing usability and user satisfaction, *"We must test the application to make
sure it meets the audience requirements. To ensure user satisfaction, we must
measure user satisfaction and its usability along the way as the UI design takes
torm. Usability experts agree that usability evaluation should be part of the de-
velopment process rather than a post-mortem or forensic activity. Despite the
importance of usability and user satisfaction, many system developers still fail
io pay adequate attention to usability, focusing primarily on functionality™ [4,
pp. 61-62]. In too many cases, usability still is not given adequate considera-
tion. Adoption of usability in the later stages of the life cycle will not produce
sufficient improvement of overall quality. We will study how to develop user
satisfaction and usability in Chapter 14.

4. Refining and iterating the design.

pd

i2.4 MACRO-LEVEL PROCESS: IDENTIFYING VIEW CLASSES BY
ANALYZING USE CASES

The interface object handles all communication with the actor but processes no
business rules or object storage activities. In essence, the interface object will

286 FART FOUR: OBJECT-ORIENTED DESIGN

operate as a buffer between the user and the rest of the business objects [3]. The
interface object is responsible for behavior related directly to the tasks involving
contact with actors. Interface objects are unlike business objects, which lie inside
the business layer and involve no interaction with actors. For example, computing
employee overtime is an example of a business object service. However, the data
entry for the employee overtime is an interface object.

lacobson, Ericsson, and Jacobson explain that an interface object can partici-
pate in several use cases. Often, the interface object has a coordinating responsi-
bility in the process, at least responsibility for those tasks that come into direct
contact with the user. As explained in earlier chapters, the first step here is to be-
gin with the use cases, which help us to understand the users’ objectives and tasks.
Different users have different needs; for example, advanced, or “power,” users
want efficiency whereas other users may want ease of use. Similarly, users with
disabilities or in an international market have still different requirements, The chal-
lenge is to provide efficiency for advanced users without introducing complexity
for less-experienced users, However, developing use cases for advanced as well as
less-experienced users might lead you to solutions such as shortcuts to support
more advanced users.

The view layer macro process consists of two steps:

1. For every class identified (see Figure 12-1), determine if the class interacts with
a human actor. If so, perform the following: otherwise, move to the next class.
L1 Identify the view (interface) objects for the class. Zoom in on the view objects

by utilizing sequence or collaboration diagrams to identify the interface
objects; their responsibilities, and the requirements for this class.

1.2 Define the relationships amang the view (interface) objects. The interface
objects, like access classes, for the most part, are associated with the busi-
ness classes. Therefore, you can let business classes guide you in defining
the relationships among the view classes. Furthermore, the same rule as
applies in identifying relationships among business class objects also applies
among interface objects (see Chapter 8).

2. herate and refine;

The advantage of utilizing use cases in identifying and designing view layer ob-
jects is that the focus centers on the user, and including users as part of the plan-
ning and design is the best way to ensure accommodating them. Once the inter-
face objects have been identified, we must identify the basic components or objects
used in the user tasks and the behavior and the charactenstics that differentiate
each kind of object, including the relationships of interface objects to each other
and to the user. Also identify the actions performed, the objects 1o which they ap-
ply. and the state information or attributes that each object in the task must pre-
serve, display. and allow to be edited, Figure 12-2 shows the relationships among
business, access, and view layer objects. The relationships among view class and
business class objects is opposite of that among business class and access class ob-
jects, After all, the interface object handles all communication with the user but
does not process any business rules; that will be done by the business objects.

CHAPTER 12: VIEW LAYER: DESIGNING INTERFACE OBUECT: 287

J

The class smernets with a
humnn actog

Zoom in by utilizing
‘SEQuence or The class doesn’t inleract
collaboration with a humun actor

din 1
S
MNext cliss

Refine and iterais

Definie the
relatonships among
the view objects

iy ris
Crone

FIGURE 12-1
The macro-level design process.

Effective interface design is more than just following a set of rules. It also in-
volves early planning of the interface and continued work through the software de-
velopment process. The process of designing the user interface involves clarifying
the specific needs of the application, identifying the use cases and interfice objects,
and then devising a design that best meets users’ needs, The remainder of this
chapter describes the micro-level UT design process and the issues involved.

12.5 MICRO-LEVEL PROCESS

To be successtul, the design of the view layer objects must be user driven or user
centered. A user-centered interface replicates the user’s view of doing things by
providing the outcomes users expect for any action. For example, if the goal of an

288 rarT FOUR: OBJECT-ORIENTED DESIGN

1

View objecis

Jn

Business objeots

L

Tk
Access objects

FIGURE 12-2

The relalionships among business, access, and view objects. In some sltuatlons the view class
can bacome a direct aggregate of the access object, as when designing a Wab interface that
must communicate with an application/Web-server through access objects. See also Figure
11-18.

application is to automate what was a paper process, then the tool should be sim-
ple and natural, Design your application so it allows users to apply their previous
real-world knowledge of the paper process to the application interface. Your de-
sign then can support this work environment and goal, After all, the main goal of
view layer design is to address users’ needs.

The following is the process of designing view (interface) objects:

1. For every interface object identified in the macro Ul design process (see Fig-
ure 12-3), apply micro-level Ul design rules and corollaries to develop the UL
Apply design rules and GUI guidelines to design the Ul for the interface ob-
jects identified.

2. lterate and refine.

In the following sections, we look at the three Ul design rules based on the de-
sign axioms and corollaries of Chapter 9.

12.5.1 Ul Design Rule 1. Making the Interface Simple [Application
of Corollary 2)

First and foremaost, your user interface should be so simple that users are unaware
of the tools and mechanisms that make the application work. As applications be-
come more complicated, users must have an even simpler interface, so they can
learn new applications more easily. Today's car engines are 50 complex that they
have onboard computers and sophisticated electronics. However, the driver inter-
face remains simple: The driver needs only a steering wheel and the gas and brake
pedals to operate a car. Drivers do not have to understand what is under the hood
or even be aware of it to drive a car, because the driver interface remains simple,
The Ul should provide the same simplicity for users.

CHAPTER 12: VIEW LAYER: DESIGHING INTERFACE OBJECTS 289

Apply micro-level U
design rules and GUI
guidelines 1o cach
interface object
identified to develop
the LI

Mext intérface objects
Refine and flerae

FIGURE 12-3 _
The micro-leweal dasm process,

This rule is an application of Corollary 2 (single purpose, see Chapter 9) in Ul
design. Here, it means that each UI class must have a single, clearly defined pur-
pose. Similarly, when you document, you should be able easily to describe the pur-
pose of the Ul class with a few sentences. Furthermore, we have all heard the
acronym KISS (Keep It Simple, Stupid). Maria Capucciati, an expert in user in-
terface design and standards, has a better acronym for KISS—Keep It Simple and
Straightforward. She says that, once you know what fields or choices to include in
your application, ask yourself if they really are necessary. Labels, static text, check
baxes, group boxes, and option buttons often clutter the interface and take up twice
the room mandated by the actual data. If a user cannot sit before one of your
screens and figure out what to do without asking a multitude of questions, your in-
terface is not simple enough; ideally, in the final product, all the problems will
have been solved.

A number of additional factors may affect the design of your application. Fer
example, deadlines may require you to deliver a product to market with a minimal
design process, or comparative evaluations may force you to consider additional
features. Remember that additional features and shortcuts can affect the product,
There is no simple equation to determine when a design trade-off is appropriate.
S0, in evaluating the impact, consider the following:

* Every additional feature potentially affects the performance, complexity, stabil-
ity, maintenance, and support costs of an application.

* It is harder to fix a design problem after the release of a product because users
may adapt, or even become dependent on, a peculiarity in the design.

* Simplicity is different from being simplistic. Making something simple to use
often requires a good deal of work-and code.

* Features implemented by a small extension in the application code do not nec-
essarily have a proportional effect in a user interface, For example, if the primary

290 PuRT FOUR: OBJECT-DRIENTED DESIGN

task is selecting a single object, extending it to support selection of multiple
objects could make the frequent, simple task more difficult to carry out. De-
signing & Ul based on its purpose will be explained in the next section.

12.5.2 Ul Design Rule 2. Making the Interface Transparent and
Natural (Application of Corollary 4)

The user interface should be so intuitive and natural that users can anticipate what
to do next by applying their previous knowledge of doing tasks without a com-
puter. An application, therefore, should reflect a real-world model of the users’
goals and the tasks necessary to reach those goals,

The second Ul rule is an application of Corollary 4 (strong mapping) in Ul de-
sign. Here, this corollary implies that there should be strong mapping between the
user's view of doing things and Ul classes. A metaphor, or analogy, relates two
otherwise unrelated things by using one to denote the other (such as a question
mark to label a Help button), For example, writers use metaphors to help readers
understand a conceptual image or model of the subject. This principle also applies
to UT design. Using metaphors is a way to develop the users’ conceptual model of
an application, Familiar metaphors can assist the users to transfer their previous
knowledge from their work environment to the application interface and create a
strong mapping between the users’ view and the Ul objects. You must be careful
in choosing a metaphor to make sure it meets the expectations users have because
of their real-world experience. Often an application design is based on a single
metaphor. For example, billing, insurance. inventory, and banking applications can
represent forms that are visually equivalent to the paper forms users are accus-
tomed io seeing.

The UT should not make users focus on the mechanics of an application, A good
user interface does not bother the user with mechanics. Computers should be
viewed as a tool for completing tasks, as a car is a ool for getting from one place
to another. Users should not have to know how an application works 1o get a task
done, as they should not have to know how a car engine works to get from one
place to another. A goal of user interface design is to make the user interaction
with the computer as simple and natural as possible.

12.5.3 Ul Design Rule 3. Allowing Users to Be in Control of the
Software (Application of Corollary 1)

The third UI design rule states that the users always should feel in control of the
software, rather than feeling controlled by the software. This concept has a num-
ber of implications. The first implication is the operational assumption that actions
are started by the user rather than the computer or software, that the user plays &an
active tather than reactive role. Task automation and constraints still are possible,
but you should implement them in a balanced way that allows the user freedom of
choice,

The second implication is that users, because of their widely varying skills
and preferences, must be able to customize aspects of the interface. The system
software provides user access to many of these aspects. The software should re-

CHAPTER 12; VIEW LAYER: DESIGNING INTERFACE OBJECTS 291

flect user settings for different system properties such as color, fonts, or other
options,

The final implication is that the software should be as interactive and respon-
sive as possible. Avoid modes whenever possible. A mode is a state that excludes

general interaction or gtherwise limifs. the user 1o specific interactions. Users are
in control when they are able to switch from one activity to another, change their

minds easily, and stop activities they no longer want to continue. Users should be
able to cancel or suspend any time-consuming activity without causing disastrous
results. There are situations in which modes are useful; for example, selecting a
file name before opening it. The dialog that gets me the file name must be modal
(more on this later in the section).

This rule is a subtle but important application of Corollary 1 (uncoupled design
with less information content) in U design. It implies that the UT object should
represent, al most, one business object, perhaps just some services of that business
object. The main idea here is to avoid creating a single Ul class for several busi-
ness objects. since it makes the Ul less flexible and forces the user to perform tasks
n a monelithic way. Some of the ways 1o put users in control are these:

* Make the interface forgiving.
= Make the interface visual.

= Provide immediate feedback.
» Avoid modes.

= Make the interface consistent.

12.5.3.1 Make the Interface Forgiving The users’ actions should be easily re-
versed. When users are in control, they should be able to explore without fear of
causing an imeversible mistake, Users like to explore an interface and often learn
by trial and error. They should be able to back up or undo previous actions. An
effective interface allows for interactive discovery. Actions that are destructive and
miay cause the unexpected loss of data should reguire a confirmation or, better,
should be reversible or recoverable, Even within the best designed interface, users
can make mistakes. These mistakes can be both physical (accidentally pointing to
the wrong command or data) and mental (making a wrong decision about which
command or data to select). An effective design avoids situations that are likely to
result in errors. It also accommodates potential user errors and makes it easy for
the user to recover. Users feel mare comfortable with a system when their mis-
takes do not cause serious or immeversible results.

12.53.2 Make the Interface Visual Design the interface so users can see, rather
than recall, how to proceed. Whenever possible, provide users a list of items from
which to choose, instead of making them remember valid choices.

12.5.3.3 Provide Immediate Feedback Users should never press a key or select
an action without receiving immediate visual or audible feedback or both, When
the cursor is on a choice, for example, the color, emphasis, and selection indica-
tors show users they can select that choice. After users select a choice, the color,
emphasis, and selection indicators change 1o show users their choice is selected.

292 PaRT FOUR: OBJECT-ORIENTED DESIGN

12.5.3.4 Avoid Modes Useérs are in a mode whenever they must cancel what
they are doing before they can do something else or when the same action has dif-
ferent results in different situations. Modes force users to focus on the way an ap-
plication works, instead of on the task they want to complete. Modes. therefore,
interfere with usérs” ability 1o use their conceptual model of how the application
should work. It is not always possible to design a modeless application; however,
you should make modes an exception and limit them to the smallest possible
scope. Whenever users are in a mode, you should make it obvious by providing
good visual cues. The method for ending the mode should be easy to learn and re-
member. These are some of the modes that can be used in the user interface:

« Modal dialog. Sometimes an application needs information to continue, such as
the name of a file into which users want to save something. When an error occurs,
users may be required to pérform an action before they continue their task. The
visual cue for modal dialog is a color boundary for the dialog box that contains
the modal dialog.

s Spring-loaded modes. Users are in a spring-loaded mode when they continually
must take some action (o remain in that mode; for example, dragging the mouse
with a mouse button pressed to highlight a portion of text. In this case. the vi-
sual cue for the mode is the highlighting, and the text should stay highlighted
for other operations such as Cut and Paste.

s Tool-driven modes. 1f you are in a drawing application, you may be able to
choose a tool, such as a pencil or a paintbrush, for drawing. After you select the
tool, the mouse pointer shape changes 1o match the selected ool You are in 2
mode, but you are not likely o be confuséd because the changed mouse pointer
is a constant reminder you are in a mode.

12.5.3.5 Make the Interface Consistent Consistency is one way to develop and
reinfarce the user's conceptual model of applications and give the user the feeling
that he or she is in control, since the user can predict the behavior of the system.
User interfaces should be consistent throughout the applications; for example,
using a consistent user interface for the inventory application.

12.6 THE PURPOSE OF A VIEW LAYER INTERFACE

Your user interface can employ oné or more windows. Each window should serve
a clear, specific purpose. Windows commonly are used for the following purposes:

o Forms and data entry windows, Data entry windows provide dccess to data that
users can retrieve, display, and change in the application.

 Dialog boxes, Dialog boxes display status information or ask users o supply
information or make a decision before continuing with a task. A typical feature
of a dialog box is the OK button that a user clicks with a mouse to process the
selected choices,

« Application windows (main windows). An application window is & container of
application objects or icons. In other words, it contains an entire application with
which users can inferuct

CHAPTER 12 VIEW LAYER: DESIGNING INTERFACE OBJECTS 203

You should be able to explain the purpose of a window in the application in a
single sentence. If a window serves multiple purposes, consider creating a sepa-
rate one for each,

12.6.1 Guidelines for Designing Forms and Data Entry Windows
When designing a data entry window or forms (or Web forms), identify the infor-
mation you want to display or change. Consider the following issues:

* In general, what kind of information will users work with and why? For exam-
ple, a user might want to change inventory information, enter orders, or main-
tain prices for stock items.

* Do users need access (o all the information in a table or just some information?
When working with a portion of the information in a table, use a query that se-
lects the rows and columns users want

* In what order do users want rows to appear? For example, users might want to
change inventory information stored alphabetically, chronologically, or by in-
ventory number. You have to provide a mechanism for the user so that the order
can be modified.

Next, identify the tasks that users need to work with data on the form or data
entry window. Typical data entry tasks include the following:

* Navigating rows in a table, such as moving forward and backward, and going to
the first and last record.

* Adding and deleting rows.

+ Changing data in rows.

* Saving and abandoning changes.

You can provide menus, push buttons, and speed bar buttons that users choose
to initiate tasks. You can put controls anywhere on a window. However, the layout
you choose determines how successfully users can enter data using the form. Here
are some guidelines to consider:

* You can use an existing paper form, such as a printed invoice, as the starting
point for your design,

* If the printed form contains too much information to fit on a screen, consider
using a main window with optional smaller windows that users can display on
demand or using a window with multiple pages (see Figure 12-4). Users typi-
cally are more prodictive when a screen is not cluttered.

* Users scan a screen in the same way they read a page of a book, from left to
right and top to bottom. In general, put required or frequently entered informa-
tion toward the top and left side of the form, entering optional or seldom-entered
information toward the bottom and right side. For example, on a window for en-
tering inventory data, the inventory j_q@Ep:r and item name might best be placed
in the upper-lefi comer. while the signature could appear lower and to the right
(see Figure 12-5), =

* When information is positioned vertically, align fields at their left edges (in West-
emn countrieg), This usually makes it easier for the user to scan the information,

FIGURE 12-4
An example ol a mmmmﬂmminhwmmm

Text labels ysually.are left aligned and placed above or 1o the left of the areas to
which they apply. When placing text labels to the left of text box controls, align
the height of the text with text displayed in the text box (see Figure 12-6).
» When entering data. users expect to type information from left to right and top
to bottom, as if they were using a typewriter (usually the Tab key moves the fo-
cus from gne control to another). Amrange controls in the sequence users expect
o enter data However, you may want the users to be able to jump from one
group of controls to the beginning of another group, skipping over individual
controls. For example, when entering address information, users expeet to enter
the Address, City, State, and Zip Code (see Figure 12-7).
» Put similar or related information together, and use visual effects to emphasize
the grouping. For example, you might want to put a company’s billing and ship-
ping address information in separate groups. To emphasize a group, you can en-
close its controls in a distingt visual area using a rectangle, lines, alignment, or
colors (see Figure 12-4).

——

'CHAPTER 12 VIEW LAYER: DESIGNING INTERFACE OBJECTS 295

Frequently

entered

mionmation

FIGURE 12-5
Required should be put toward fhe lop and lstt side of the form, entering optional or
-—-'-'-_-J__.. "

FIGURE 12-8 §
Place text labels o the lsft of taxt box controls, align the height of the text with text displayed in
ey : 5 : : ;
Possible locations for texd
Labels

296 PART FOUR: OBJECT-ORIENTED DESIGN

FIGURE 12-7 _
Arrange controls [eft to right and top to botom.

The Real-World Issues on Agenda “"Future of the GUI Landscape” examines win-
dow presentations for the future.

12.6.2 Guidelines for Designing Dialog Boxes and Error Messages
A dialog box provides an exchange of information or a dialog between the user
and ma-appuaaﬁmmmmmmiwi
item (including pop-up ot cascading menu items) or a command button, define
Title text to be the name of the associated commiand from the menu item or com-
mand button. However, do not include ellipses and avoid including the command’s
menu title unless necessary fo compose a reasonable title for the dialog box. For
example, for a Print command on the File Menu, define the dialog box window's
title text as Print, Not Print or File Print.
If the dialog box is for an emor message, use the following guidelines:

* Your error miessage should be positive: Forexample instead of displaying “You
have typed an illegal date format,” display the message “Enter date format
mmidd/yyyy.? .

* Your error message should be constructive.For example, avoid messages such
25 “You should know better! Uise the OK button™; instead display “Press the
Undo button and try again" The users should feel as if they are controlling the
system rather than the software is controlling them.

% Mpte: Sometimes, an innocent design decision (such is representing date ad mm/ddiyy) can have im-
mense implications, The case in point is the Y2K (year 2000) problem, where for many computer and
software systemis, the vear 2000 will bring a host of problems related o software programs that were
designed 1o record the year uging only the last two digits,

CHAPTER 12: VIEW LAYER: DESIGNING INTERFACE OBJECTs 297

Real-World Issues on Agenda

FUTURE OF THE GUI LANDSCAPE: 3-D OR FLATLAND?

Stephanie Wilkinson

Not so long ago, wsing icons, windows and drop-
down menus to navigate applications was a radical
idea for corporate systems bullders. Today, that GUI
is all but ublquitous, But what will the GUI of tomor-
row look lka?

It the visionarles had thelr way, corporate PG
usars would imeract with their computars in a whally
natusalistic way. They'd never need help screens to
explain an icon or find 2 file or launch an applica-
tion, Everything would appear “virtually real” Every-
thing would be three-dimansional.

“The GUI interface of today is a vast two-dimen-
sional flatland" says John Latla, president of 41h
Wave Inc., an Alexandria, Va_, research firm. “3-D |s
a portal to the next generation

3-D isn't jus! for games anymore. Corporate IT
deparimenis are awakening to the power of dala vi-
sualization, next-ganaration GlUis and of cotirse, the
lure of the Web. Here's the business justification for
going 3-0:

Because 3-D environmenis are more ke real
life, workers can parform tasks morg easily and with
less training. 3-0 interdaces trade cognitive effort for
simple percaption: instead of having to mull over
how 1o attach a document to a memo using com-
mands of icons, the user chooses a stapler on the
deskiop,

More information can be presented—and un-
derstogd—in-a 3-D fermat than in 2-D. Example: An
80-page organizational chart can be represented in
3-0b on a single screen. The hisrarchical and lateral
refationships betwsen depariments and employees
are also instantly apparant.

3-0 ratchels up the powsr of data mining a- full
natch. By using 3-0, commonplace data matrix—
national widget sales In seven regions over the lasi
three quarters, for instance—can be transformed
into a tullcolor, animated map that aliews hidden
trerids to amarge.

“The average office warker has to deal with vast
amounts of information, most of which is not wall-
organized," says Robertson. A 3-D interiace not only
allows users o se& more on screan al once, "they
also see the struciure of that information.” he notes.
For instance, the contents of a user's hard drive
could appear In 3-0 spacs, allowing the wser 1o lo-
cate files and launch applications by zeoming in
on—aor “foregrounding™—a particular part of the
SCENe.

Ot course, analysts such as Lata say thers is
no guarantee thal what comes from Microsolt will
become the next GU| standard. Xerox PARC itsalf
Is working on a 3-D interface technology that will
eventually resull in a commercial version called
WabForager. And Intet Corp., which has a vision of
how the task of graphics processing should take
place inside the box, is readying its own =at of
APls:

So there's no need to worry quite yet about
choosing the next corporate GUI and making the
transition lo 3-D on every desktop. Says Latta:
“That's probably sfill a few years away”

By Slephario Wilkinson, PC Week, Saplembar 23, 1996, Vol
13, Number 38,

Your error message should be brief and meaningful. For example, “ERROR: type
check Offending Command . . " Although this message might be useful for the
programmer during the testing and debugging phase, it is not a useful message

for the user of your system.

Orient the controls in the dialog box in the direction people read. This usually
means lefl to right and top to bottom. Locate the primary field with which the
user interacts as close o the upper-left corer as possible. Follow similar guide-
lines for orienting controls within a group in the dialog box.

298 FAAT FOUR: OBJECT-ORIENTED DESIGN

Lay out the major command buttons either stacked along the upper-right border of
the dialog box or lined up across the bottom of the dialog box (see Figure 12-8).
Positioning buttons on the left border is very popular in Web interfaces (see Fig-
ure 12-9). Position the most important button, typically the default command, as
the first button in the set. If you use the OK and Cancel buttons, group them to-
gether. If you include a Help command button, make it the last button in the set.

You can use other arrangements if there is a compelling reason, such as a nat-
ural mapping relationship. For example, it makes sense to place buttons labeled
North, South, East, and West in a compasslike layout. Similarly, a command but-
ton that modifies or provides direct support for another control may be grouped or
placed next to that control. However, avoid making this button the default button
because the user will expect the default button 1o be in the conventional location.
Once again, let consistenicy guide you through the design.

For easy readability, make buttons a consistent length. Consistent visual and op-
erational styles will allow users to transfer their knowledge and skills more easily.
However, if maintaining this consistency greatly expands the space required by 4
set of buttons, it may be reasonable 1o have one button larger than the rest. Place-
ment af command buttons (or other controls) within a tabbed page implies the ap-
plication of only the transactions on that page. If command buttons are placed
within the window but not on the tabbed page. they apply to the entire window
(see Figure 12-4),

FIGURE 12-8 _ _ _
Arrange the command buttens either aiong the upper-right bordar of the form. or dialog box or lined
up-acrass the bottom.

Default Button

CHAPTER 12 VIEW LAYER: DESIGNING INTEREACE OBJECTS 299

d *%0)

SISSIUISH

danilien | Smaicaling | B & Eoonovecy | ot Comene st | Comgnion | Lammunpe: Sy § Edeation
b Einurecesl i oy | o Sobduas |ty | Bedoal B P!

e | 30t Hiee | ot Pesy nod infpomaton | O Bupemerias | Py Priig
Bk | Cane apodanters [Drectry | (8res Busay i Congagt Uy | T af Ten

Cozpnghd © 1506 The M Grass18 Companiss, v

FIGURE 12-9
Positioning buttons an the left is popular in Web inferfaces.

12.6.4 Guidelines for Designing Application Windows

A typical application window consists of a frame (or border) that defines its extent
and a title bar that identifies what is being viewed in the window, If the viewable con-
tent of the window exceeds the current size of the window, scroll bars are used. The
window also can include other components like menu bars, toolbars, and status bars.

An application window usually contains common drop-down menus. While a
command drop-down menu is not required for all applications, apply these guide-
lines when including such menus in your software’s interface:

* The File menu. The File menu provides an interface for the primary operations
that apply to a file. Your application should include commands such as Open,
Save, Save As and Print. Place the Exit command at the bottom of the File
menu preceded by a menu separator. When the user chooses the Exit command,
close any open windows and files and stop any further processing. If the object
remains active even when its window is closed, such as a folder or printer. then
include the Close command instead of Exit.

* The Edit menu. Include general purpose editing commands on the Edit menu,
These commands include the Cut, Copy, and Paste commands. Depending on
your application, you might include the Undo, Find, and Delete commands,

300 FoRT FOUR: OBJECT-ORIENTED DESIGN

» The View menu and other command menus. Commands on the View menu should
change the user’s view of data in the window. On this menu, include commands
that affect the view and not the data itself; for example, Zoom or Outling. Also
include commands for controlling the display of particular interface elements n
the view; for example, Show Ruler. These commands should be placed on the
pop-up menu of the window,

* The Window menu. Use the Window menu in multiple document, interface-style
applications for managing the windows within the main workspace.

* The Help menu. The Help menu contains commands that provide access to Help
information, Include a Help Topics command. This command provides access 1o
the Help Topics browser, which displays topics included in the application's
Help file. Alternatively, provide individual commands that access specific pages
of the Help Topics browser, such as Contents, Index. and Find Topic. Also in-
clude other user assistance commands or wizards that can guide the users and
show them how to use the system. It is conventional to provide access (o copy-
right and version information for the application, which should be included in
the About Application name command on this menu. Other command menus can
be added, depending on your application’s needs.

« Toolbars and status bars. Like menu bars, toolbars and status bars are special
interface constructs for managing sets of controls. A toolbar is a panel that
contains a set of controls, as shown in Figure 12-10, designed to provide
quick access to specific commands or options. Some specialized toolbars are
called ribbons, toolboxes, and palettes. A status bar, shown in Figure 12-11,
is @ special area within a window, typically at the bottom, that displays infor-
mation such as the current state of what is being viewed in the window or any
other contextual information, such as keyboard state: You also can use the sta-
tus bar to provide descriptive messages about a selected menu or toolbar but-
ton, and it provides excellent feedback to the users. Like a toolbar, a status
bar can contain controls; however, typically, it includes read-only or nonin-
teractive information.

12.6.5 Guidelines for Using Colors

For all objects on a window, you can use colors to add visual appeal to the form.
However, consider the hardware. Your Windows-based application may end up be-
ing run on just about any sort of monitor. Do not choose colors exclusive to a par-
ticular configuration, unless you know your application will be run on that specific
hardware. In fact, do not dismiss the possibility that a user will run your applica-
tion with nio calor support at.all.

Figure out a color scheme. If you use multiple colors, do not mix them indis-
criminately. Nothing looks worse than a circus interface [1]. Do you have a geod
color sense? If you cannot make everyday color decisions, ask an artist or a de-
signer to review your color scheme. Use color as a highlight to get attention. If
there is one field you want the user to fill first, color it in such a way that it will
starid out from the other fields.

CHAPTER 12: VIEW LAYER: DESIGNING INTEREACE oRiECTs 301

Toolbar.

FIGURE 12-11
Status bar,

How long will users be sitting in front of your application? If it is eight hours
a day, this is not the place for screaming red text on a sunny yellow background.
Use common sense and consideration. Go for soothing, cool, and neutral colors
such as blues or other neutral colors. Text must be readable at all times: black is
the standard color, but blue and dark gray also can work.

Associate meanings to the colors of your interface, For example, use blue for
all the uneditable fields, green to indicate fields that will update dynamically, and
red to indicate error conditions. If you choose to do this, ensure color consistency
from screen to screen and make sure the users know what these various colors indi-
cate. Do not use light gray for any text except to indicate an unavailable condition.

Remember that a centain percentage of the population is color blind. Do not let
color be your only visual cue. Use an animated button, a sound package, or a mes-
sage box. Finally, color will not hide poor functionality.

The following guidelines can help you use colors in the most effective manner:

* You can use identical or similar colors to indicate related information. For exam-
ple. savings account fields might appear in one color, Use different or conirasting
colors to distinguish groups of information from each other. For example, check-
ing and savings accounts could appear in different colors,

* For an object background, use a contrasting but complementary color. For exam-
ple, in an entry field, make Sure that the background color contrasts with the data
color 50 that the user can easily read data in the field,

* You can use bright colors to call attention to certain elements on the screen, and
you can use dim colors to make other elements less noticeable. For example, you
might want to display the required field in a brighter color than optional fields,

* Use colors consistently within each window and among all windows in your
application. For example, the colors for push buttons sFould be the same
throughout.

* Using too many colors can be visually distracting and will make your applica-
tion less interesting. o s

* Allow the user to modify the color configuration of your application.

302 psAT FOUR: OBJECT-ORIENTED DESIGN

12.6.6 Guidelines for Using Fonts

Consistency is the key 10 an effective use of fonts and color in your interface. Most
commercial applications use |2-point System font for menus and 10-point System
font in dialog boxes. These are fairly safe choices for most purposes, If System is
too boring for you, any other sans serif font is easy 1o read {such as Arial or Hel-
vetica). The most practical serif font is Times New Roman.

Avoid Courier unless you deliberately want something to look like it came from
a typewriter. Other fonts may be appropriate for word processing or desktop pub-
lishing purposes but do not really belong on Windows-based application screens.
Avoid using all uppercase text in labels or any other text on your screens: It s
harder to read and feels like you are shouting at the users. The only exception is
the OK command button. Also avoid mixing more than two fonts, point sizes, o
styles, so your screens have a cohesive look. The following guidelines can help
you use fonts to best convey information:

* Use 1:::;1'r|.rr1a::-n.I_!,F-r installed fonts, not specialized fonts that users might not have on
their machines.

+ Use bold for control labels, so they will remain legible when the object is

imm:

= Lsge t'nnts consistently within each form and among all forms in your applica-
uﬂnwmx controls should be the same through-
out. Consistency is reassuring to users, and psychologically makes users feel in
control.

* Using too many font styles, sizes, and colors can be visually distracting and
"should be avoided. Too many Tont styles are confusing and make users feel less
in control.

* To emphasize text, increase its font size relative to other words on the form or
use a contrasting color. Avoid underlines; they can be confusing and difficult to
read on the screen.

12.7 PROTOTYPING THE USER INTERFACE

Rapid prototyping encourages the incremental development approach, "grow,
don't build” Prototyping involves a number of iterations. Through each iteration,
we add a little more to the application, and as we understand the problem a little
better, we can make more improvements. This, in turn, makes the debugging task
easier.

It is highly desirable to prepare a prototype of the user interface during the
analysis to better understand the system requirements. This can be done with most
CASE tools,” operational software using visual prototyping, or normal develop-
ment tools. Visual and rapid prototyping is a valuable asset in many ways. First, it
provides an effective tool for communicating the design. Second, it can help you
define task flow and better visualize the design. Finally, it provides a low-cost ve-

¥ Systermn Architect Screen Painter can be used 1o prototype Windows screens and menos,

CHAPTER 12 VIEW LAYER: DESIGNING INTERFACE cBJECTS 303

hicle for getting user input on a design. This is particularly useful early in the de-
sign process. ' '
Creating a user interface generally consists of three steps (see Figure 12-12):
1. Create the user interface objects (such as buttons, data entry fields).
2. Link or assign the appropriate behaviors or actions to these user interface ob-
jects and their events.
3. Test, debug, then add more by going back to step 1.

FIGURE 12-12 .
Prototyping user interface consists of three steps.

e
1o the user
interface controls
and their events

304 raET FOUR OBJEGT-ORIENTED DESIGN !

When vou complete the first prototype, meet with the user for an exchange of
ideas about how the system would go together. When approaching the vser, de-
scribe your prototype briefly. The main purpose should be to spark ideas. The user
should not feel that you are imposing or even suggesting this design. You shounld
be very positive about the user's system and wishes. Instead of using leading
phrases like “we could do this . . " or “It would be easier if we .. .” choose
phrases that give the user the feeling that he or she 1s in charge. Some example
phrases are [3]:

“Do you think that if we did . . . it would make it easier for the nsers?”
“Do usérs ever complain about . . .7 We could add , . . to make it easier.”

This cooperative approach usually results in more of your ideas being used in the end,

12.8 CASE STUDY: DESIGNING USER INTERFACE FOR THE
VIANET BANK ATM

Here we are designing a GUI interface for the ViaNet bank ATM for two reasons.
First, the ViaNet bank wants to deploy touch-screen kiosks instead of conven-
tional ATM machines (see Figure 12—13). The second reason is that, in the near |
future, the ViaNet wants to create “on-line banking,” where customers can be con- |
nected electronically to the bank via the Internet and conduct most of their bank-
ing needs. Therefore, ViaNet would like to experiment with GUI interface and
perhaps reuse some of the Ul désign concept for the on-line banking project (see
Figure 12-14),

!

FIGURE 12-13
Touwch screen kiosk.

CHAPTER 12: VIEW LAYER: DESIGNING INTERFACE OBJECTS 305

FIGURE 12-14
An example of an on-line banking project,

12.8.1 THE VIEW LAYER MACRO PROCESS

The first step here is to identify the interface objects, their requirements, and their
responsibilities by applying the macro process to identify the view classes. When
creating user interfaces for a business model, it is important to remember the role
that view objects play in an application. The interface should be designed to give
the user access to the business process modeled in the business layer. It is not de-
signed to perform the business processing itself.

For every class identified (so far we have identified the following classes: Ac-
count, ATMMachine, Bank, BankDB. CheckingAccount, SavingsAccount, and
Transaction),

= Determine if the class interacts with a human actor. The only class that inter-
acts with a human actor is ATMMachine.

« Identifv the interface objects for the class. The next step is to go through the
sequence and collaboration diagrams to identify the interface objects, their re-
sponsibilities, and the requirements for this class.

In Chapter 6, we identified the scenarios or use cases for the ViaNet bank. The
various scenarios involve Checking Account, Savings Account, and general bank
Transaction {see Figures 6-9, 6-10, and 611). These use cases interact directly
with actors:

1. Bank transaction (see Figure 6-9).
2. Checking transaction history (see Figure 6=9).

306 e:RT FOUR: OBJECT-ORIENTED DESIGN

3. Deposit checking (see Figure 6-10).

4. Deposit savings (see Figure 6-11).

5. Savings transaction history (see Figure 6-9).

6. Withdraw checking (see Figure 6-10).

7. Withdraw savings (see Figure 6-11).

8. Valid/invalid PIN (see Figure 7-4, we have only a sequence diagram for this one).

Based on these use cases, we have identified eight view or interface objects. The
sequence and collaboration diagrams can be very useful here to help us better un-
derstand the responsibility of the view layers objects. To understand the responsi-
bilities of the interface objects, we need to look at the sequence and collaboration
diagrams and study the events that these interface objects must process or gener-
ate. Such events will tell us the makeup of these objects. For example, the PIN val-
idation user interface must be able to get a user’s PIN number and check whether
it is valid (see Figures 7—4 through 7-8).

Furthermore, by walking through the steps of sequence diagrams for each sce-
nario (such as withdraw, deposit, or an account information), you can determine
what view objects are necessary for the steps to take place. Therefore, the process
of creating sequence diagrams also assists in identifying view layer classes and
even understanding their relationships.

= Define relationships among the view (interface) objects. Next, we need to identify
the relationships among these view objects and their associated business classes,

So far, we have identified eight view classes:

AccountTransactionUl{for a bank transaction)
CheckingTransactionHistory Ul
SavingsTransactionHistoryUl
BankClientAccessUlI (for validating a PIN code}
DepositCheckingUl

DepaozitSavingsUl

WithdrawCheckingU1

WithdrawSavingsUI

The three transaction view objects— AccountTransactionUL, CheckingTransac-
tionHistoryUI and SavingsTransactionHistoryUI—basically do the same thing,
display the transaction history on either & checking or savings account. (To refresh
your memory, look at Figures 11-23 through 11-25 to see how we implemented
this for object storage and the access class). Therefore, we need only one view
class for displaying transaction history, and let us call it AccountTransactionUl

The AccountTransactionUl view class is the account transaction interface that
displays the transaction history for both savings and checking accounts. Figure
1215 depicts the relation among the AccountTransactionUl and the account class.
The relationship between the view class and business object is opposite of that be-
tween business class and access class. As said earlier, the interface object handles
all communication with the user but processes no business rules and lets that work

CHAFTER 12: VIEW LAYER: DESIGNING INTERFAGE OBJECTS 30T

One of the view class for the
scoouni class
AccountTransactonlfl
Business class
Acoount

FIGURE 12-15
Relation between the view class AccounfTransactiont! and Hs assoeiated business class {Ascount),

be done by the business objects themselves. In this case, the account class provides
the information to AccountTransactionUl for display to the users.

The BankClientAccessUI view class provides access control and PIN code val-
idation for a bank client (see Figure 12-16).

The four remaining view objects are the DepositCheckingUl view class (inter-
face for deposit tochecking accounts), DepositSavingsUT view class (interface for
deposit to savings accounts), WithdrawSavingsUI view class (interface for with-

FIGURE 12-186
Relation between the view class (BankClientAccessUl) and its associated business class
(BankClian).
View class for the
BankClient
class

BankClientAccessUl

Business class

BankClient

308 ruRT FOUR: OBJECT-ORIENTED DESIGN

CheckingAccount 11

SavingsAccouniLiT

SavingsAceaunl

FIGURE 12-17

The view classes for chegking and savings accounts.

drawal from savings accounts), and WithdrawCheckingUl view class (interface for
withdrawal from savings accounts),

» Iterate and refine. This is the final step. Through the iteration and refinement
process, we notice that the four classes DepositCheckingll, DepositSavingsUI,
WithdrawSavingsUL, and WithdrawCheckingUI basically provide a single service,
which is getting the amount of the ransaction (whether user wants to withdraw
or deposit) and sending appropriate messages to SavingsAccount or CheckingAc-
count business classes. Therefore, they are good candidates to be combined into
two view classes; one for CheckingAccount and one for SavingsAccount (by
following Ul rule 3). The CheckingAecountUI and SavingsAccountUI allow
users to deposit money to or withdraw money from checking and savings

accounts.

The CheckingAccountUl view class provides the interface for a checking ac-
count deposit or withdrawal (see Figure 12—17).

The SavingsAccountUl view class provides the interface for a savings account
deposit or withdrawal (see Figure 12-17).

Finally, we need to create one more view class that provides the main control
or the main Ul to the ViaMNet bank system. The MainUI view class provides the
main contrel interface for the ViaNet bank system,

12.8.2 The View Layer Micro Process
Based on the outcome of the macro process, we have the following view classes:

BankChentAccessUI
MainlLIT
AccountTransaction U]
CheckingAccountU]
SavingsAccountUl

CHARTER 12: VIEW LAYER: DESIGMING INTERFACE OBJECTS 309

For every interface object identified in the macro Ul design process,

* Apply micro-level Ul design rules and corollaries to develop the Ul We need to
go through each identified interface object and apply design rules (such as mak-
ing the Ul simple, transparent, and controlled by the user) and GUT guidelines
to design them.

» [terate and refine.

12.8.3 The BankClientAccessUl Interface Object

The BankClientAccessUl provides clients access to the system by allowing them
to enter their PIN code for validation. The BankClientAccessUI is designed to
work with a card reader device, where the user can insert the card and the card
number should be displayed automatically in the card number field. In a situation
where there is no card reader, such as on-line banking (e.g., user wants to log onto
the system from home), the user must enter his or her card number (see Figure
12-18).

12.8.4 The MainUl Interface Object

The MainUl provides the main control to the ATM services. Users can select to
deposit money to savings or checking, withdraw money from savings or checking,
inguire as to & balance or transaction history, or quit the session (see Figure 12-19),

12.8.5 The AccountTransactionUl Interface Object

The AccountTransactionUl interface object will display the transaction history of
either a savings or checking account. The user must select the account type by
pressing the radio buttons. Figure 12-20 displays the account balance inguiry and
transaction history interface.

FIGURE 12-18

The BarkClientAccessl| interface. The buttons are énlarged fo make it easier for touch screan
users. The numeric keypad on the right side of the dialog box is for data entry and is not a compo-
nent of the BankClientAccassl,

iallet Banking

Insert-Your Card er Enter Your Card Numbay
Enter Your PIN.Code and Prass OX

Coarc Numiber

310 euRT FOUR: OBJECT-ORIENTED DESIGN

Vialet Banking

Welcome to the ViaNet ATM
Make your selection by pressing the

desired button

Deposit Deposit withdraw § | Withdraw || Balance :
Checking §| Savings t:hecl-cing! Savings Inquiry

FIGURE 12-19
The MainUl interface

FIGURE 12-20
The AcoountTransactionl] interface.

iaMet Banking

r—Select- Checking or Savirngs————
| = Checking
|

| Savings

Balance |

CHAPTER 12: VIEW LAYER: DESIGNING INTERFACE osyecTs 311

12.8.6 The CheckingAccountUl and SavingsAccountUl
Interface Objects

The CheckingAccountUI and SavingsAccountU] interface objects allow users to
deposit to and withdraw from checking and savings accounts. These two interfaces
are designed with two tabs, one for deposit and one for withdrawal. When users
press one of the MainUI's buttons, say, Deposit Savings, the SavingsAccountl]
will be activated and the system should go automatically to the Deposit Savings
window, Figure 12-21 displays the SavingsAccountUI and CheckingAccountUl
interfaces.

See problem 8 for an alternative design for SavingsAccountUl and CheckingAc-
countUl classes. It always is a good idea to create an alternative design and select
the one that best satisfies the requirements.

12.8.7 Defining the Interface Behavior

The role of a view layer object is to allow the users 1o manipulate the business
maodel, The actions a user takes on a screen (for example, pressing the Done but-
ton) should be translated into a request to the business object for some kind of pro-
cessing. When the processing is completed, the interface can update itself by dis-
playing new information, opening a new window, or the like.

Defining behavior for an interface consists of identifying the events o which
you want the system to respond and the actions 1o be taken when the event occurs.
Both GUI and business objects can generate events when something happens o
them (for example, a button is pushed or a client’s name changes). In response o
these events, you define actions to take. An action i a combination of an object
and a message sent to it

FIGURE 12-21
The CheckingAccountl and SavingsAccountld| interface objects.

312 eeAT FOUR: OBJECT-ORIENTED DESIGN

FIGURE 12-21

CHAPTER 12! VIEW LAYER: DESIGNING INTERFACE OBJECTS 313

Llgar presses OK bufton

VeniyPassword
(aCardMNurnber.aFin)

BankClient::verifyPassword (cardNurmber. aPIN)

Mot faund r Dsplay “Incorrect
}-l PIM, please try
Esajnll

Activate.
BankUTWindow

FIGURE 12-22
An activity diggram for the BankClientAccaessl),

12.8.7.1 Identifying Events and Actions for the BankClientAccessUI Interface
Object When the user inserts his or her card, types in a PIN code, and presses
the OK button, the interface should send the message BankClient::verifyPass-
word (see Chapter 10) to the object to identify the client. If the password is found
correct, the MainUl should be displayed and provide users with the ATM services:
otherwise, an error message should be displayed. Figure 12-22 is the UML activ-
ity diagram of BankClientAccessUl events and actions.

12.8.7.2 Identifying Events and Actions for the MainUI Interface Object
From this interface, the user should be able 1o do the following:

Deposit mnto the checking account by pressing the Deposit Checking button.
Deposit mto the savings account by pressing the Deposit Savings button,
Withdraw from the savings account by pressing the Withdraw Savings button.
Withdraw from the checking account by pressing the Withdraw Checking button.
View balance and transaction history by pressing the Balance Inguiry button.
Exit the ATM by pressing Done,

. L] L] L] L -

Figure 12-23 is the UML activity diagram of MainUI events and actions.

314 PaRT FOUR: OBJECT-ORIENTED DESIGN

I Butten is pressed

h Y b 4 L
Deposit Dieposit Savings Withdraw Withidraw Balance Inguiry Done burmon is
Checking baiton button |5 Checking bunion Savings bution 15 bution is pressed

is pressed pressed is pregsed preseed pressed

Display Display Dasplay Display ;
SavingsAccountL] SavingsAccouniUl | | CheskingAccouniUl | | CheckingAccount U] Display -

window/tab window/tnb wiriclow/taby windowltab AceountTransaction

Deposit Checking Deposit Savings Withdraw Checking Withdraw Savings

FIGURE 12-23

An activity diagram for the Mainll,

12.8.7.3 Identifying Events and Actions for the SavingsAccountUl Interface
Object The SavingsAccountU] has two tabs. First, the SavingsAccountUI opens
the appropriate tab. For example, if the user selects the Deposit Savings from
the MainUL the SavingsAccountUl will display the Deposit Savings tab. Figure
12-24 shows the activity diagram for the Deposit Savings. A withdrawal is simi-
lar to Deposit Savings and has been left as an exercise; see problem 6.

FIGURE 12-24
Activity diagram for processing a deposit 10 a savings agcount.

Deposit Savings button is pressed in
the BankUT window

Display Diepasit
Savings window

Account::deposil (anAmount)

CHAPTER 12 VIEW LAYER: DESIGNING INTERFACE CeJEcT: 315

Identifying events and actions for the CheckingAccountUl interface object i5
left as an exercise; see problem 7.

12.8.74 ldentifying Events and Actions for the AccountTransactionUl Inter-
face Object A user can select either savings or checking account by pressing on
the Savings or Checking radio button, The system then will display the balance
and transaction history for the selected account type. The default is the checking
account, s0 when the AccountTransactionUl window is opened for the first time,
it will show the checking account history. Pressing on the savings account radio
button will cause it to display the savings account balance and history. To close
the display and get back to MainUl, the user presses the Done button (see Figure
12-235). Notice that here we assume that the account has a method called display-
Trans, which takes a string parameter for type of account (Savings or Checking)
and retrieves the appropriate transaction. Since we did not identify or design it, we
need to develop it here. This occurs quite often during sofiware development,
which is why the process is iterative.

Figure 12-26 shows the relationships among the classes we have designed so
far, especially the relationship among the view classes and other business classes.

FIGURE 12-25
Activity diagram for displaying thie account iransaction.

Burton is pressed

Savings s

pressed

Aocount:displayTrans (“Savings™) Avceount;:displayTrans (“Checking™)

— Prome is pressed

Tzt Clasdey Wiew Dladsied)
Wk
BankClesbArveali] LX)
4] #accouni el
L I
; FhankClient | HankCliem BiceoairTrsrisc BoaliT:
BankCliesd AThiMachine sl Mainlll AcceuniT mnssction Ll
Hfesttdena : Sinng A 1 Gidng
Flartame - fefing stuie | Sinng
ReicN b ; BNy #iakChenlAeresstil] wshowflarClisntAccesstIl) itiowhainl!l{)
EpinNumehea : Sming | | pro—ry, Hank{lemthceinilll
Padiniii | Ao o Sl DU
Fhaeh TTH: Rark DR T, T
sty 5
T Hat [1 I
1.~ s AccouniTomac o] EavingsAccounill] Chechinpiccoutil
Acces Clases) A Rirmnaldld
CoOin
WipaedDare - Doas
HaskDl ""::EL srll":::" + Teankaction worran T i - Tieme
ibankClient ; BankChieni | | Rickeaf yrs - itie
Barnosia - flosd Bz © Acsuun Baczuum ¢ Accuum Bacouum 1 Avsoum
.hmg. Emnﬁm BpaaiBlalance | Meal
Bagonunl | Agtount
— watiwAcomest TranseuonLIi0 | || sshosSavingi Acommilil | | sibosCheciengAcmeamidicg
v lhalrm)
srmreve e} Nireaie Taasmactiont §
tupdabeCliend) FreireveAvea | T ¥ Y
pretisveSvingEAgceun]| Acvaanil b
+updatsSaviagy ArToui) h
sermrvel_ttclom A o)
srirpubme B K ing Acemul | ‘i‘
CheclasgAecium Saviagihccoudl
Faav ACodmns Favingh ichecking : Accoum
i i | Checling .
+uirhdand | |
eemievs Accoy i
—ieirdveA oot | L
T FibcIemt apda e ooound |
|
1
FIGURE 12-26

UML class diagram of the ViaMet ATM system, showing the relationship of the new view classes
with the business and access classes.

HNOd 14V Q|E

WENS30 O3 LNIHO-LOArE0

CHAPTER 12 VIEW LAYER: DESIGNING INTERFACE OBJECTS 31T

12.9 SUMMARY

The main goal of a user interface is to display and obtain information needed in
an accessible, efficient manner. The design of a software’s interface, more than any-
thing else, affects how the user interacts and, therefore, experiences the application.
It is important for the design to provide users the information they need and clearly
tell them how to complete a task successfully. A well-designed UI has visual
appeal that motivates users to use the application. In addition, it should use the
limited screen space efficiently.

In this chapter, we learned that the process of designing view layer classes con-
sists of the following steps:

1. Macro-level UI design process: identify view layer objects.

2. Micro-level Ul design activities:
2.1. Design the view layer objects by applying the design axioms and corollaries.
2.2, Prepare a prototype of the view layer interface.

3, Test usability and wser satisfaction.

4, Refine and iterate,

The first step of the process concerns identifying the view classes and their re-
sponsibilities by utilizing the view layer macro-level process. The second step is
to design these classes by utilizing view layer micro-level processes, User satis-
faction and usability testing will be studied in the next chapter. Furthermore, we
looked at Ul design rules, which are based on the design corollaries; and finally
we studied the guidelines for developing 4 graphical user interface (GUI).

The guidelines are not a substitution for effective evaluation and iterative re-
finement within a design. However, they can provide helpful advice during the de-
sign process. Guidelines emphasize the need to understand the intended audience
and the tasks 1o be carried out, the need to adopt an iterative design process and
identify use cases, and the need 1o consider carefully how the guidelines can be
applied in specific situations. Nevertheless, the benefits gained from following de-
sign guidelines should not be underestimated. They provide valuable reference ma-
terial to help with difficult decisions that crop up during the design process. and
they are a springboard for ideas and a checklist for omissions. Used with the
proper respect and in context, they are a valuable adjunct to relying on designer
intuition alone to solve interface problems,

KEY TERMS

Application window (p. 292)

Data entry window (p. 292)

Graphical user interface (GUT) (p. 281)
Metaphor {(p. 290)

Mode (p. 291)

Object-oriented user interface (QOUT) (p. 282)
Spring-loaded mode (p. 292)

User-centered interface (p. 287)

318 PRt FOUR: OBJECT-ORIENTED DESIGN

1. Why is user interface one of the most important components of any software?
2. How can we develop or improve our creativity?
3. Perform a research on GUI and OOUI and write 2 short paper comparing them.
4. Why do users find OOUI easier to use?
5. How can use cases help us design the view layer objects?
6. Describe the macro and micro processes of view laver design.
7. How can metaphors be used in the design of a user interface?
8. Under what circumstances can you use modes in your user interface?
9, Describe the Ul design rules.
10. What is KISS?
11. How would you achieve consistency in your user interface?
12. How ean you make your Ul forgiving?
13, Describe some of the ways that you can provide the user fesdback:

1. A touch screen is one way to interact with the ViaNet kiosk. What are some other ways
1o interact with ViaNet kiosk? Use your imagination to design an interface. Also, design
it for people with disability challenges.

2. Research the WWW or your local library on OOUI tools on the market and write a
paper of your findings,

3. Please describe problems with the design of the window in Figure 12-27.

4. How can you improve the design of the interface in Figure 12-287

5. The window in Figure 1229 suffers from an overkill of radio buttons, Improve the in-
terface by redesigning it.

FIGURE 12-27
Problem 3.

CHAPTER 12: VIEW LAYER: DESIGNING INTERFAGE OBJECTS 319

320 paRT FOUR: OBJECT-ORIENTED DESIGN

7

FIGURE 12-30
The AccountUl view class for both CheckingAccount and Savingsfcoount classes.

6. Develop an activity diagram for Withdraw Savings.

7. Identify events and actions for the CheckingAccountUl interface object.

8. An alternative design to the ViaNet bank UI would be to create one view class (say, Ac-
countUT) instead of separate view classes for CheckingAccount and SavingsAccount (see
Figure 12-30). Figure 12-31 shows an aliernative design for the Accountl/l. Compare
this design to the one in the text and point out advantages and disadvantages to each

FIGURE 12-31
An alternative design for the Atcountl] interface object.

CHAPTER 12: VIEW LAYER: DESIGNING INTERFACE oBJECTS 321

REFERENCES

1. Capucciati, Maria R. Purting Your Best Face Forward: Designing an Effective User In-
rerface. Redmond, WA: Microsoft Press, 1991,

2, IBM. Human-user interaction, object-oriented user interface, hitps/fwww.ibm com/ibm/hei,
1997,

3. Jacobson, Ivar; Ericsson, Maria; and Jacobson, Agneta, The Object Advantage Business
Process, Reengineering with Object Technology. Reading, MA: Addison-Wesley, 1995,

4. Sulaiman, Suzish. “Ussbility and the Software Production Life Cycle” Proceedings of
the CHI '96, Conference Companion on Human Factors in Computing Systems: Com-
mon Ground, Vancouver, British Columbia, 1996, pp. 61-62.

3. Trower, Tandy. Creating a Well-Designed User Interface. Stanford, CA: University
Video Communication, 1994,

SOFTWARE QUALITY

P roducing high-quality software means providing users with products that
meet their needs and expectations. The essence of quality is customer sat-
isfaction. In this part, different dimensions of sofiware quality and testing
are discussed. Testing may be conducted for different reasons, Quality as-
surance testing looks for potential problems in a proposed design. Usabil-
ity testing, on the other hand, tests how well the interface fits user needs
and expectations. To ensure user satisfaction with the finished product, user
satisfaction must be measured along the way as the design takes form. In
this part, we also study how to develop test plans for quality assurance, user
satisfaction, and software usability. Part V consists of Chapters 13 and 14.

LeusprER a2 == = ——0s . o]
Software Quality Assurance

Chapter Objectives

You should be able to define and understand

= Testing strategies,

* The impact of an object orientation on testing,
* How to develop lesi cases,

* How to develop test plans,

13.1 INTRODUCTION
To develop and deliver robust systems, we need a high level of confidence that [2]

* Each component will behave correctly.
* Collective behavior is correct.
* No incorrect collective behavior will be produced.

Not only do we need to test components or the individual objects, we also must
examine collective behaviors (o ensure maximum operational reliability, Verifying
components in isolation is necessary but not sufficient to meet this end [2].

In the early history of computers, live bugs could be a problem (see Bugs and
Debugging). Moths and other forms of natural insect life no longer trouble digital
computers. However, bugs and the need o debug programs remain.

Ina 1966 article in Scientific American, computer scientist Christopher Strachey
wrote,

Although programming techniques have improved immensely since the early years, the
process of finding and correcting errors in programming—"debugging” still remains a
most difficult, confused and unsatisfactory operation, The chief impact of this state of
affairs is psychological. Although we are happy o pay lip service 1o the adage that o
err is human, most of us like to make a small private reservation about our own perfor-

325

326 PiRT FIVE: SOFTWARE QUALITY

Bugs and Debugging

The use of the term bug In computing has bean
traced to Grace Murray Hopper during the final days
of World War 1l. On September 8, 1945, she was
part of a team at Hanvard University, working to build
the Mark |l, a large relay computer {actually a room-
size electronic calculator). It was a hot summer
evening and the Mark |I's developers had the win-
dow open. Suddenly, the device stopped its calcu-
lations. The trouble turned out o involve a flip-fiop

located, the team found & moth in it (tha first case
of a “bug™), “We got a pair of tweezers,” wrote pro-
grammer Hopper. "“Very carefully we took the malh
oul of the relay, and put It in the logbook, and put
scotch fape over it”

After that, whenaver Haward Alken asked If a
team was “making any numbers,” negative responses
ware given wilh explanation “we are debugging the
compuier.”

switch {a relay). When the defective relay was

mance on special nccasions when we really try. It is somewhat deflating to be shown
publicly and incontroventibly by a machine that even when we do try, we in fact make
just as many mistakes as other people. If your pride cannot recover from this blow, you
will never make a programmer.

Although three decades have elapsed since these lines were written, they still cap-
ture the essence and mystique of debugging.

Precisely speaking, the elimination of the synm;gggl_mg,mtm___grcitss of de-

M_gglng, whereas the dzwclmn and elimination of the logical bug is the process of

lg:qtu:g Gruenberger wriles,

The logical bugs can be extremely subtle and may need a great deal of effort (o elimi-
nate them. Tt is commonly accepted that all large software systems (operating or appli-

canion) have bugs remaining in them, The number of possible paths through a large com-
puter program is enormous, and it is physically impossible to explore all of them. The
single path contnining a bug may not be followed in actual production runs for a long
time (if ever) after the program has been certified as correct by its suthor or others. [10]

In this chapter, we look at the testing strategies, the impact of an object orien-
tation on software quality, and some guidelines for developing comprehensive tes
cases and plans that can detect and identify potential problems before delivering
the software to its users. After all, defects can affect how well the software satis-
fies the users’ requirements. Chaprer 14 addresses usability and user satisfaction
Lests,

13.2 QUALITY ASSURANCE TESTS

One reason why quality assurance is needed is because computers are infamous
for doing what you tell them to do, not necessarily what you want them to do. To
close this gap, the code must be free of errors or bugs that cause unexpected re-

CHAPTEA 13; SOFTWARE OUALITY ASSurance 327

sults, a process called debugging. Debugging is the process of finding out where
something went wrong and correcting the code to eliminate the errors or bugs that
cause unexpected results. For example, if an incorreet result was produced at the
end of a long series of compuiations, perhaps you forgot to assign the correct value
1o a variable, chose the wrong operator, or used an incorrect formula,

Testing and searching for bugs is a balance of science, art, and luck. Sometimes,
the error is obvious: The bug shows its hideous head the first time you run the ap-
plication. Other bugs are stealthy and might not surface until a method receives a
certain value or until you take a closer look at the output and find out that the re-
sults are off by a factor of a certain fraction or the middle initials in a list of names
are wrong. There are no magic tricks to debugging; however, by selecting appro-
priate testing strategies and a sound test plan, you can locate the errors in your sys-
temn and fix them using readily available debugging tools. A software debugging
system can provide tools for finding errors in programs and correcting them. Let
us take a look at mg_lwnu might encounter when you run your
program:

* Language (syntax) errors result from incorrectly constructed code, such as an
incorrectly typed keyword or some necessary punctuation omitted, These are the
easiest types of errors to detect; for the most part, you need no debugging tools
to detect them. The very first time you run your program the system will report
the existence of these errors.

* Run-time errors occur and are detected as the program is running, when & state-
ment attempts an operation that is impossible to carry out. For example, if the
program f(ries to access a nonexistent object (say, a file), a run-time error will
occur.

* Logic errors ocour when code does not perform the way you intended. The code
might be syntactically valid and run without performing any invalid operations
and yet produce incorrect results. Only by testing the code and analyzing the re-
sults can you verify that the code performs as intended. Logic errors also can
produce run-time errors.

The elimination of the syntactical bug is the process of debugging, whereas the
detection and elimination of the logical bug is the process of testing. As you might
have experienced by now, logical errors are the hardest type of error to find.

Quality assurance testing can be divided into two major categories: error-based
testing and scenario-based testing. Error-based testing techniques mmﬁ
class’s method for particular clues of interests, then describe how these clues
should be tested. For example, say we want Lo test the payrollComputation method
of an Employee class: anEmplovee. computePavroll (hours). To test this method,
we must try different values for hours (say, 40, 0, 100, and — 10) to see if the pro-
gram can handle them (this also is known as testing the boundary conditions).
The method should be able to handle any value; if not, the error must be recorded
and reported. Similarly, the technigue can be used to perform integration testing
by testing the object that processes a message and not the object that sends the
message.

32B PART FIVE: SOFTWARE QUALITY

Scenario-based testing, also called usage-based testing, concentrates on what
the user does, not what the product does. This means capturing use cases and the
tasks users perform, then performing them and their varianis as tests. These sce-
narios also can identify interaction bugs. They often are more complex and realis-
tic than error-based tests. Scenario-based tests tend to exercise muitiple subsys-
tems in a single test, because that is what users do. The tests-will not find everything,
but they will cover at least the higher vigibility system interaction bugs [12].

13.3 TESTING STRATEGIES

The extent of testing a system is controlled by many factors, such as the risks in-

volved, limitations on resources, and deadlines. In light of these issues, we must
deploy @ Tesfing strategy (hal does the “best” job of finding defects in a product
within the gwen consiraints, 'I'hm are miany tesrmg su'ateg!ea but most testing

Can pit pmve we the correctness c:f a sysﬂem it can establish unI}r its “acceptability.”

13.3.1 Black Box Testing

The concept of the black box is used to represent a system whose inside workings
are not available for inspection [16]. In a black box, the test item is treated as
“black,” since its logic is unknown; all that is known is what goes in and what
comes out, or the imput and output (see Figure [3-1). Weinberg describes writing
a user manual as an example of a black box approach to requirements. The user
manual does not show the internal logic, because the users of the system do not
care about what is inside the system.

In black box testing, you try various inputs and examine the resulting output; you
can learn what the box does but nothing about how this conversion is implemented
[15]. Black box testing works very nicely in testing objects in an object-oniented
environment. The black box testing technique also can be used for scenario-based
tests, where the system’s inside may not be available for inspection bit the inpat

“and output are defined through use cases or other analysis information.

FIGURE 13-1
The black box is an imaginary box thai hides. its internal workings.

9

S

CHAPTER 13: SOFTWARE QUALITY ASSURANCE 329

13.3.2 White Box Testing

sting assumes that the specific Jogic is important and must be tested
to guarantes the system's proper functioning. The main use of the white box is in
error-based testing, when you already have tested all objects of an application and
all external or public methods of an object that you believe to be of greater
importance (see Figure 13-2), In white box testing, you are looking for bugs that
have a low probability of execution, have been carelessly implemented, or were
overlooked previously [3].
One form of white box testing, called path testing, makes certain that each path
in a object’s method is executed at least once during testing. Two types of path
tesfing are statement testing coverage and branch testing coverage [3]:

* Statement testing coverage, The main idea of statlement testing coverage is o
test every statement in the object’s method by executing it at least once. Murray
states, “Testing less than this for new software is unconscionable and should be
eniminalized” [quoted in 2], However, realistically, it is impossible to test a pro- 7
gram on every single input, 50 you never can be sure that a program will not fail
on some input. :
* Branch testing coverage. The main ideéa behind branch testing coverage is to
perform enough tests to ensure that every branch alternative has been executed
at least once under some test [3]. As in statement testing coverage, it is unfeasi—
ble to fully test any program of considerable size.

Most debugging tools are excellent in statement and branch testing coverage.
White box testing is useful for error-based testing.

13.3.3 Top-Down Testing

Top-down testing assumes that the main logic or object interactions and systems
messages of the application need more testing than an individual object’s methods
or supporting logic. A top-down strategy can detect the serious design flaws early
in the implementation.

In theory, top-down lesting should find critical design errors early in the testing
process and significantly improve the quality of the delivered software because of

FIGURE 13-2
In & white-box tesling sirateqgy, fhe intemeal workings are: known,

Imput @

330 cuRT FIVE: SOFTWARE QUALITY

the iterative nature of the test [6]. A top-down strategy supports festing the user
interface and event-driven systems.

Testing the user interface using a top-down approach means testing interface
navigation. This serves two purposes, according to Conger. First, the top-down
appmash can test the navigation through screens and verify that it matches the
requirements. Second, users can see, at an early stage, how the final application
will look and feel [6]. This apprunch also is useful for scenario-based testing, Top-

13.3.4 Hntlum—l.lp Testing

Bottom-up testing starts with the details of the system and proceeds to higher
levels by a progressive aggregation of details until they collectively fit the re-
quirements for the system. This approach is more appropriate for testing the indi-
vidual objects in a system. Here, you test each object, then combine them and test
their intéraction and the messages passed among objects by utilizing the top-down
approach.
In bottom-up testing, you start with the methods and classes that call or rely on
o others. You test them thoroughly. Then you progress to the next level up: those
‘methods and classes that use only the bottom level ones already tested. Next, you
test combinations of the bottom two layers. Proceed until you are testing the en-
tire program. This strategy makes sense because you are checking the behavior of
a piece of code before it is used by another. Botiom-up testing leads to integration

testing, which leads to systems testing. —

-

13.4 IMPACT OF OBJECT ORIENTATION ON TESTING
The impact of an object orientation on testing is summarized by the following [12]:

» Some types of errors could become less plausible (not worth testing for).
= Some types of errors could become more plausible (worth testing for now).
» Some new types of errors might appear.

For example, when you invoke a method, it may be hard to tell exactly which
method gets executed. The method may belong to one of many classes. It can be
hard to tell the exact class of the method, When the code accesses it, it may get
an unexpected value, In a non-object-oriented system, when you looked at

x = computePayroll():

you had to think about the behaviors of a single function, In an object-oriented en-
vironment, you may have to think about the behaviors of base::computePayroll(),
of derived:zcomputePayroll, and 50 on. For a single message, you need 1o explore
(or at least think about) the union of-all-distinct behaviors. The problem can be
r:s:rrnpln:ated if you have mulfiple inheritance. However-by applying the design ax-
ioms and corollaries of object-oriented design (QOD: see Chapter 9), you can limit
the differences in behavior between base and derived classes.

The testing approach is essentially the same in both environments. The problem
of testing messages in an object orientation is the same as testing code that takes

CHAPTER 13: SOFTWARE QUALITY ASSURANCE 331

a function as a parameter and then invokes it. Marick argues that the process of
testing vanable uses in OOD essentially does not change, but you have to look in
more places to decide what needs testing. Has the plausibility of faults changed?
Are some types of fault now more plausible or less plausible? Since object-oriented
methods generally are smaller, these are easier to test. At the same time, there are
more opportunities for integration faults. They become more likely, more plausible.

13.4.1 Impact of Inheritance in Testing

osuppose you have this situation |[12]: The base class contains methods inherited()
and redefined() and the derived class redefines the redefined() method.

The derived::redefined has to be tested afresh since it is a new code. Does de-
rived:anherited() have to be retested? If it uses redefined() and the redefined() has
changed, the derived:iinherited() may mishandle the new behavior. So; it needs
new tests even though the derived:inherited() itself has not ¢hanged.

If the base::inherited has been changed, the derived::inherited() may not have
to be completely tested. Whether it does depends on the base methods; otherwise,
it must be tested again. The point here is that, if you do not follow the O0D
guidelines, especially if you don't test incrementally, you will end up with ob-
Jects that are extremely hard to debug and maintain:

13.4.2 Reusability of Tests

If base:;redefined() and derived::redefined() are two different methods with differ-
ent protocols and implementations, each needs a different set of test requirements
derived from the use cases. analysis, design, or implementation. But the methods

are likely 1o be similar. Their sets of test re:qmremams will overlap. The better the
QQ[}_‘ the greater is the mrerlap You need to write new tests only for those de-
rived::redefined Tequirements not satisfied by the base:-redefined tests. If you have
to apply the base:redefined tests to objects of the class “derived,” the test inputs
may be appropriate for both classes but the expected results might differ in the
derived class [12].

Marick argues that the simpler is a test, the more likely it is to be reusable in sub-
classes. But simple tests tend to find only the faults you specifically target; complex
tests are better at both finding those faults and stumbling across others by sheer
luck. There is a trade-off here, one of many between simple and complex tests.

The models developed for analysis and design should be used for testing as
well. For example, the class diagram describes relationships between objects; that
is, an object of one class may use or contain an object of another class, which is
useful information for testing. Furthermore, the use-case diagram and the highest
level class diagrams can benefit the scenario-based testing. Since a class diagram
shows the inheritance structure, which is important information for error-based
testing, it can be used not only during analysis but also during testing.

13.5 TEST CASES

To have a comprehensive testing scheme, the test must cover all methods or a good
majority of them. All the services of your system must be checked by at least one

Qe €

L'y
}]ﬁl,ﬁf‘!{)

b
Az

Cidd))

332 PFART FIVE: SOFTWARE QUALITY

test. To test a system, you must construct some test input cases, then describe how
the output will look. Next, perform the tests and compare the outcome with the
expected output. The good news is that the use cases developed during analysis
can be used to describe the usage test cases. After all, tests always should be
designed from specifications and not by looking at the product! Myers describes
the objective of testing as follows [13]: T

* Testing is the process of executing a program with the intent of finding errors.

* A good test case is the one that has a high probability of detecting an as-yet
undiscovered error.

» A successful test case is the one that detects an as-yet undiscovered ermor.

13.5.1 Guidelines for Developing Quality Assurance Test Cases

Gause and Weinberg provide a wonderful example to highlight the essence of a
test case. Say, we want to test our new and improved “Superchalk™:

Writing a geometry lesson on a blackboard is clearly normal use for Superchalk. Draw-
ing on clothing is not normal, but is quite reasonable 1o expect. Eating Superchalk may
be unreasonable, but the design will have to deal with this issue in some way, in order
to prevent lawsuits, No single failure of requirements work leads 1o more lawsuits than
the confident declaration, [8, p. 252]

Basically, a test case is a set of what-if questions. Freedman [Weinberg][7] and
Thomas [14] have developed guidelines that have been adapted for the UA:

* Describe which feature or service (external or internal) your test attempts to
COver.

* If the test case is based on a use case (i.e., this is a usage test), it is a good idea
to refer to the use-case name. Remember that the use cases are the source of test
cases. In theory, the software is supposed to match the use cases, not the reverse.
As soon as you have enough of use cases, go ahead and write the test plan for
that piece,

= Specify what you are 1esting and which particular feature (methods). Then, spec-

ify what you are going to do to 1est the feature and what you expect to happen.

Test the normal use of the object’s methods.

Test the abnormal but reasonable use of the object’s methods.

Test the abnormal and unreasonable use of the object’s methods.

Test the boundary conditions: For example, if an edit control accepts 32 charac-

ters, try 33, then try 40, Also specify when you expect error dialog boxes, when

you expect some default event, and when functionality still is being defined,

* Test objects’ interactions and the messages sent-among them. If you have de-
veloped sequence diagrams, they can assist you in this process.

= When the revisions have been made, document the cases so they become the
starting basis for the follow-up test.

+ Attempting to reach agreement on answers generally will raise other what-if
questions. Add these to the list and answer them, repeat the process until the list
i5 stabilized, then you need not add any more questions.

- & & ®

CHAFTER 13: SOFTWARE QUALITY ASSURANCE 333

* The internal guality of the software, such as its reusability and extendability,
should be assessed as well. Although the reusability and extendability are more
difficult to test, nevertheless they are extremely important. Software reusability
rarely is practiced effectively. The organizations that will survive in the 21st cen-
tury will be those that have achieved high levels of reusability—anywhere from
T0-80 percent or more [5]. Griss [9] argues that, although reuse is widely de-
sired and often the benefit of utilizing object technology, many object-oriented
reuse efforts fail because of oo narrow a focos on technology rather than the
policies set forth by an organization. He recommends an institutionalized ap-
proach to software development, in which software assets intentionally are cre-
ated or acquired to be reusable. These assets then are consistently used and
maintained to obtain high levels of reuse, thereby optimizing the organization’s
ability to produce high-quality software products rapidly and effectively. Your
test case may measure what percemtage of the system has been reused, say, mea-
sured in terms of reused lines of code as opposed to new lines of code written.

Specifying results is crucial in developing test cases. You should test cases that
are supposed to fail. During such tests, it is-a good idea to alert the person run-
ning them that failure is expected. Say, we are testing a File Open feature. We need
to specify the result as follows:

1. Drop down the File menu and select Open.
2. Try opening the following types of files:
= A file that is there (should work).
= A file that is not there (should get an Error message).
= A file name with international characters (should work).
* A file type that the program does not open (should get a message or conver-
sion dialog box),

13.6 TEST PLAN

On paper, it may seem that everything will fall into place with no preparation and
a bug-free product will be shipped. However, in the real world, it may be a good
idea to use a test plan to find bugs and remove them. A dreaded and frequently
overlooked activity in software development is writing the test plan. A test plan is
developed to detect and identify potential problems before delivering the software
to its users. Your users might demand a test plan as one item delivered-with the
program. In other cases, no test plan is required, but that does not mean you should
not have one. A test plan offers a road map for testing activities, whether usabil-
ity, user satisfaction, or quality assurance tests. It should state the test objectives
and how to meet them.

The test plan need not be very large; in fact, devoting too much time to the plan
can be counterproductive. The following steps are needed to create a test plan:

1. Objectives of the test. Create the objectives and describe how to achieve them.
For example, if the objective is usability of the system, that must be stated and
also how to realize it. (Usability testing will be covered in Chapter 14,)

334 PART FIVE: SOFTWARE QUALITY

2. Development of a fest case. Develop test data, both input and expected output,
based on the domain of the data and the expected behaviors that must be tested
{more on this in the next section).

3. Test analysis. This step involves the examination of the fest output and the doc-
umentation of the test results. If bugs are detected, then this is reported and the
activity centers on debugging. After debugging, steps | through 3 must be re-
peated until no bugs can be detected.

All passed tests should be repeated with the revised program, called regression
testing, which can discover errors introduced during the debugging process, When
sufficient testing is believed to have been conducted, this fact should be reported,
and testing for this specific product is complete [3].

According to Tamara Thomas [14], the test planner at Microsoft, a good test
plan is one of the strongest tools you might have. It gives you the chance to be
clear with other groups or departments about what will be tested, how it will be
tested, and the intended schedule, Thomas explains that, with a good, clear test
plan, you can assign testing features to other people in an efficient manner. You
then can use the plan to track what has been tested, who did the testing, and how
the testing was done. You also can use your plan as a checklist, to make sure that
vou do not forget to test any features.

Who should do the testing? For a small application, the designer or the design
team usually will develop the test plan and test cases and, in some situations, ac-
twally will perform the tests. However, many organizations have a separate team,
such as a quality assurance group, that works closely with the design team and is
responsible for these activities (such as developing the test plans and actually per-
forming the tests). Most software companies also use befa festing, a popular, in-
expensive, and effective way 1o test software on a select group of the actual users
of the system. This is in contrast to alpha testing; where testing is done by in-
house testers, such as programmers, software engineers, and internal users, If you
are going to perform beta testing, make sure to include it in your plan, since it
needs to be communicated to your users well in advance of the availability of your
application in a beta version,

13.6.1 Guidelines for Developing Test Plans

As software gains complexity and interaction among programs is more tightly cou-
pled, planning becomes essential. A good test plan not only prevents overlooking
a feature (or features), it also helps divide the work load among other people, ex-
plains Thomas,

The following guidelines have been developed by Thomas for writing test plans
[14]):

* You may have requirements that dictate a specific appearance or format for your
test plan. These requirements may be generated by the users. Whatever the ap-
pearance of your test plan, try to include as much detail as possible about the tests.

 The test plan should contain a schedule and a list of required resources. List how
many people will be needed, when the testing will be done, and what equipment
will be required.

CHAPTER 13: SOFTWARE QUALITY ASSURANCE 3358

* After you have determined what types of testing are necessary (such as hlack
bax, white box, top-down, or bottom-up testing), you need to decument specif-
ically what you are going to do. Document every type of test you plan to com-
plete. The level of detail in your plan may be driven by several factors, such as
the following: How much test time do you have? Will you use the test plan as a
training tool for newer team members?

* A configuration control system provides a way of tracking the changes to the
code. At a minimum, every time the code changes, a record should be kept that
tracks which module has been changed, who changed it, and when it was altered,
with a comment about why the change was made. Without configuration con-
trol, you may have difficulty keeping the testing in line with the changes, since
frequent changes may occur without being communicated to the testers.

* A well-thought-out design tends to produce better code and result in more com-
plete testing, so it is a good idea 1o try to keep the plan up to date. Generally,
the older a plan gets, the less useful it becomes. If a test plan is so old that it
has hecome part of the fossil record, it is not terribly useful. As you approach
the end of a project, you will have less time to create plans. If you do not take
the time to document the work that needs to be done, you risk forgetting some-
thing in the mad dash to the finish line, Try to develop a habit of routinely bring-
ing the test plan in sync with the product or product specification.

* At the end of each month or as you reach each milestone, take time to complete
routine updates. This will help you avoid being overwhelmed by being so out-
of-date that you need to rewrite the whole plan, Keep configuration information
on your plan, too. Notes about who made which updates and when can be very
helpful down the road.

13.7 CONTINUOUS TESTING

Software is tested to détermine whether it conforms to the specifications of re-
quirements. Software is maintained when errors are found and corrected, and soft-
ware 15 extended when new functionality is added to an already existing program.
There can be different reasons for testing, such as to test for potential problems in
a proposed design or to compare two or more designs to determine which is bet-
ter, given a specific task or set of tasks.

A common practice among developers is to turn over applications to a guality
assurance (QA) group for testing only after development is completed. Since it is
not involved in the initial plan, the testing team usually has no clear picture of the
system and therefore cannot develop an effective test plan, Furthermore, testing the
whole system and detecting bugs is more difficult than testing smaller pieces of
the application as it is being developed. The practice of waiting until after the de-
velopment to test an application for bugs and performance could waste thousands
of dollars and hours of time.

Testing often uncovers design weaknesses or, at least, provides information you
will want to use. Then, you can repeat the entire process, taking what you have
learned and reworking your design, or move onto reprototyping and retesting. Test-
ing must take place on a continuous basis, and this refining cycle must continue

336 FART FIVE: SOFTWARE QUALITY

Real-Waorld Issues on the Agenda

CONTINUOUS TESTING CURES THE LAST-MINUTE CRUNCH

Erin Calfaway

Remember cramming for exams in college? As the
clock ticked to 4 A, and the coffee ran cold, a nag-
ging woice ingide your head jeered, "If you studied
each day, you'd be asleep right now”

Well, the same is true for festing applications. |f
you wait until after development to test an applica-
fion for bugs and performance, you could be wast-
ing thousands of dollars and hours of time. Fortu-
nately, mora corporate developers are starting 1o
pay attention fo that litthe voice that's telling them
after-the-fact testing just dossn't make sense.

That's whal happened at Bankers Trust in 1992,
“Our testing was very complete and good, bui it was
costing a lot of money and would add months onto
a project,” says Glenn Shimamoto, vice president of
technology and strategic planning at the Mew York

bank. In one case, testing added nearly sis months -

to the developmant of a funds transfer application.
The protlem; Developers would turn applications
over to & guality assurance group for testing anly af-
ter development was completed. Since the QA group
wasn'l incleded in the inktial plan, it didn't have a
clear picture of its rules until it came time 1o test,

Software Quality Engineering Corp., a training
and consulling company in Jacksonville, Fla., helped
Bankers adopl better testing practices. Now, all of
Bankers" in-house application-development efforts
integrate_sophisticated testing plans from day one
of the praoject, They also use automaled festing tools,

Why don't more companies incorporate continu-
ous testing in their application development? At
Bankers, it was simply the fact that the accounting
frameworks did not separate testing from fotal de-
velopment costs, Neglect, oversight, and pressure
to deliver a product while the business need is hot
are sorme of the other culprits. Bul, says Ed Weller,
a fellow of software processes at Bull HN Informa-
tion Systems Inc., in Phoenix, “It comes down to a
reluctance on the part of a lol of people jand orga-
nizations] to take a hard look at failure data”

Weller, a software and hardware process im-
provement vistéran, emphasizes the bensfits of for-
mally applying lessens learned from past develop-
menl mistakes 1o future projects.

At Banliers, one clear benefit is improved cus-
tomer satisfaction: Wsers now say application roll
outl is "guiet” because the guality of the product is
s0 mich betier.

But lixe digging for gold, improving the testing
process requires hard work. And results won't be
obvious ovemnight. In fact, it may take two, even
three development cycles before the payback really
becomes clear.

So if you decide lo tackle testing yoursel, be
prepared to make a long-term commitment. Says
Bull's Wellar: “This is somathing you commit to for
the rest of your life”

By Erin Callaway, PC Weak, March 25, 1005, Vil, 13, Mumbar 12

throughout the development process until you are satisfied with the results. During
this iterative process, your prototypes will be transformed incrementally into the
actual application. The use cases and usage scenarios can become lesl scenarios
and, therefore, will drive the test plans. Here are the steps to successful testing:

* Understand and communicate the business case for improved testing.

« Develop an internal infrastructure to support continuous testing.

* Look for leaders who will commit 1o and own the process:

* Measure and document your findings in a defect recording system.

« Publicice improvements as they are made and let people know what they are do-
ing betier.

CHAPTER 13; SOFTWARE QUALITY ASSURANCE 33T

13.8 MYERS'S DEBUGGING PRINCIPLES

I conclude this discussion with the Myers's bug location and debugging principles
[13k

1. Bug Locating Principles
* Think.
* If you reach an impasse, sleep on it.
* If the impasse remains, describe the problem to someone else.
* Use debugging tools (this 15 slightly different from Myers's suggestion).
* Experimentation should be done as-a last resort (this is slightly different from
Myers's suggestion),
2. Debugging Principles
* Where there is one bug, there is likely to be another.
* Fix the error, not just the symprom of it.
* The probability of the solution being correct drops as the size of the program
increases,
* Beware of the possibility that an error correction will create a new error (this
is less of a problem in an object-onented environment),

13.9 CASE STUDY: DEVELOPING TEST CASES FOR THE VIANET
BANK ATM SYSTEM

In Chapter 6, we identified the scenarios or use cases for the ViaNet bank ATM
system. The ViaNet bank ATM system has scenarios involving Checking Account,
Savings Account, and general Bank Transaction (see Figures 6-9, 610, and 6-11).
Here again is a list of the use cases that drive many object-oriented activities, in-
cluding the usability testing:

* Bank Transaction (see Figure 6-9),

* Checking Transaction History (see Figure 6-9),
= Deposit Checking (see Figure 6-10).

= Deposit Savings {see Figure 6-11).

* Savings Transaction History (see Figure 6-9).
» Withdraw Checking (see Figure 6-10).

* Withdraw Savings (see Figure 6-11).

* Valid/Invalid PIN (see Figure 7-4).

The activity diagrams and sequence/collaboration diagrams created for these
use cases are used to develop the usability test cases. For example; you can draw
activity and sequence diagrams to model each scenario that exists when a bank
client withdraws, deposits, or needs information on an account. Walking through
the steps can assist you in developing a usage test case.

Let us develop a test case for the activities involved in the ATM transaction
based on the use cases identified so far. (See the activity diagram in Figure 6-8
and the sequence diagram of Figure 7—4 to refresh your memory.)

338 raAT FIVE: SOFTWARE QUALITY

A test case general format is this: If ir receives certain input, it pradices cer-
fatin output,

L. If a bank client inserts his or her card, the system will respond by requesting
the password.

2. If the password is incorrect the system must display the bad password message,
eject the card, and request the client to take the card.

3. After the transaction is completed, the system should show the main screen.

4. If a bank client selected an incorrect command when entering the transaction,
the system will respond immediately by indicating that some error has been
made. The system should allow the customer to correct the mistake and not
force him or her to make a withdrawal if the intention was to make a deposit.

5. If an unauthorized customer attempts access to someone else’s account, the sys-
tem should record the time, date, and if possible the identity of the person (not
based on the original use cases),

6. If the cash is low, the system will notify the bank for additional money (not
based on the original use cases),

7. If an act of vandalism is committed, the system will sound an alarm and call
securily {(not based on the original use cases).

8. If the customer enters a wrong PIN number, the system will give the customer
three more chances to correct it; otherwise, it will abort the operation.

And s0 on.

This is an iteralive process; al every ilération, a new issue will be exposed that
will help you refine the system. A positive side effect of a test plan is that it might
raise some new questions. As the test cases are performed, new test cases will
come up, and you should repeat the test. Gause and Weinberg argue that, even if
you never attempt to answer the test plans, just developing them might lead you
to other, overlooked issues.

13.10 SUMMARY

Testing may be conducted for different reasons. Quality assurance testing looks for
potential problems in'a proposed design. In this chapter, we looked at guidelines
and the basic concept of test plans and saw that, for the most part, use cases can
be used to describe the usage test cases. Also, some of the technigues, strategies,
and approaches for quality assurance testing and the impact of object orientation
on testing are discussed.

Testing is a balance of art. science, and luck. It may seem that everything will
fall into place without any preparation and a bug-free product will be shipped.
However, in the real world. we must develop a test plan for locating and remov-
ing bugs. A test plan offers.a road map for testing activity; it should state test ob-
jectives and how to meet them. The plan need not be very large; in fact. devoting
too much time to the plan can be counterproductive.

There are no magic tricks to debagging; however, by selecting appropriate test-
ing strategies and a sound test plan, you can locate the errors in your system and
fix them by urilizing debugging tools.

CHAPFTER 13: SOFTWARE CUALITY ASSURANCE 339

Once you have created fully tested and debugged classes of objects, you can put
them into a library for use or reuse: The essence of an object-oriented system is
that you can take for granted that these fully tested objects will perform their de-
sired functions and seal them off in your mind like black boxes.

Testing must take place on a continuous basis, and this refining cycle must
continue throughout the development process until you are satisfied with the
results,

KEY TERMS

Alpha testing (p. 334)

Beta testing (p. 334)

Black box testing (p. 328)
Bottom-up testing {p. 330)

Branch testing coverage (p. 329)
Configuration control system (p. 335)
Debugging (p. 327)

Error-based testing (p. 327)
Language errors (p. 327)

Path testing (p. 329)

Regression testing (p. 334)
Scenario-based testing (p, 328)
Statement testing coverage (p. 329)
Test plan (p. 333)

Top-down testing (p. 329)
Usage-based testing (p. 328)
White box testing (p. 329)

REVIEW QUESTIONS

L. What is a successful test when you are looking for bugs?
Z. Describe the different testing strategies.
3. What is black box testing?
4. When would you use white box testing?
3. If you do not know what is inside the box, how would you test it?
6. In black box testing, you have to test the normal use of functions, the abnormal but rea-
sonable use of functions, and the abnormal and unreasonable use of functions—why?
7. What is the importance of developing a test case?
8. What is white box testing?
9. What is path testing?
10. What is statement testing coverage?
11. What is branch testing coverage?
12, Describe top-down and bottom-up strategies. Which do you prefer and why?
13. What is regression testing?
14. What is a test plan? What steps are followed in developing a est plan?
15, Why are debugging tools important? '
16. What basic activities are performed in using debugring tools?

340 raRT FIVE: SOFTWARE QUALITY

PROBLEMS

1. How would you decide whether & product youo are buying is bug free?

2. Research on the WWW or your local Tibrary 1o write a paper on when software must be
tested; make sure to include some real-world examples in your repori.

3. Consult the WWW or the library to obtain an article that describes beta testing, What
are the advantages and disadvantages of this form of testing? Wnite a paper based on
your findings.

4. Do resesrch on the McCabe theory of software complexity and also the McCabe test
tool.

REFERENCES

13.
14,

15

16,

Beizer, Boris. Saftware Testing Technigues, 2d ed. New York: Van Nostrand-Reinhold,
1994,

. Binder, Robert V. “The FREE Approach for System Testing: Use-Cases, Threads, and

Relations.”" Object 6, no. 2 (February 1996).

. Blum, Bruce I. Seftware Engineering: A Holistic View. New York: Oxford University

Press; 1992,

. Chow, Tsun 5. “Testing Software Design Modeled by Finite State Machines." [EEE

Transactions on Software Engineering SE-4, no, 3 (January 1978}, pp. 178-86.

. Coad, P.; and Yourdon, E. Objecr-Ortented Desipn. Englewood Cliffs, MJ: Yourdon

Press, 1991,

. Conger, Sue. The New Seftware Engineering. Belmont, CA: Wadsworth Publishing

Company, 1994,

. Freedman, Daniel P.; and Weinberg, Gerald M. Handbook af Walkthroughs, fnspec-

rions, dnd Technical Reviews, 3d ed. Glenview, IL: Scotl, Foresman and Co,, 1983,

. Gause, Donald C.; and Weinberg, Gerald M. Exploring Requiremenss Quality Before

Design. New York: Dorset House, 1989,

. Griss, M. L. “Software Reuse: Objeects and Frameworks Are Not Enough” Objecr 4,

no. 9 (Febhruary 1993),

. Gruenberger, E “Bug” In Ralston, Anthony; and Reilly, Edwin D., Jr, eds.

Encvelopedia of Compuier Science and Engineering, 2d ed,, p. 189, New York: Van
MNostrand-Reinhold Company, 1983,

. Hoperoft, John E.; and Ullman, Jeffrey D, An Introduction to Awtomata Theory, Lan-

guages; and Computation. Reading, MA: Addison-Wesley, 1987,

. Marick: Brian. The Craft of Software Testing: Subsystems Testing Including Object-

Based and Object-Oriented Testing. Englewood Cliffs, NJ: Prentice-Hall, 1995,
Myers, G. 1. The Art of Software Testing, New York: John Wiley & Sons, 1979,
Thomas, Tamara. The Benefits of Writing ¢ Good Test Plan, the Windows Interface
Cluidelines, @ Guide for Designing Software. Redmond, WA: Microsoft Press, 1994,
Weinberg, Gerald M. The Pavehology of Compuier Programming. New York: Van Nos-
trand-Reinhold, 1971,

Weinberg, Gerald M, Rethinking Svstems Analysis and Design. New York: Dorset
House, 1988,

System Usability and
Measuring User Satisfaction

Ninery percent of product development
efforts fail. About thirty percent fail to
produce anything at all, but mosr of the
Sailures don't have that problem. They
do produce a product, bur people don't
like ir. They do not use it at all, or if
they do, they may grumble éndlessiy
—Domald C. Ganse and Gerald Weinberg

Chapter Objectives

You should be able 1o define and undérstand
= Usability testing.
* User satisfaction testing.

14.1 INTRODUCTION

Quality refers to the ability of products 1o meet the users’ needs and expectations.
The task of satisfying user requirements is the basic motivation for quality, Qual-
ity also means striving to do the things right the first time, while always looking
to improve how things are being done. Sometimes, this even means spending more
time in the initial phases of & project—such as analysis and design—making sure
that you are doing the right things. Having to correct fewer problems means sig-
nificantly less wasted time and capital. When all the losses caused by poor qual-
ity are considered, high quality usually costs less than poor quality.

Two main issues in software quality are validation or user satisfaction and ver-
ification or quality assurance (see Chapter 3). There are different reasons for test-
ing. You can use testing to look for potential problems in a proposed design. You
can focus on comparing two or more designs to determine which is better, given
a specific task or set of tasks. Usability testing is different from quality assurance
testing in that, rather than finding programming defects, you assess how well the
interface or the software fits the use cases, which are the reflections of users' needs
and expectations. To ensure user satisfaction, we must measure it throughout the
system development with user satisfaction tests. Furthermore, these tests can be
used as @ communication vehicle between designers and end users [3]. In the next
section, we look at user satisfaction tests that can be invaluable in developing high-

341

342 PART FIVE: SOFTWARE QUALITY

!

Macro-level LT

design process
Identify view

layer objects and
their responsibilities

v

Micro-level U1
design process
apply design riles
) . and GUI guidelines
Refine and iterate to each interface

the design object identificd
i develop the UL

Test usability and
user satisfaction

S

Done

$

FIGURE 14-1
The process of designing view layer classes.

quality software. In Chapter 12, we learned that the process of designing view
layer classes consists of the following steps (see Figure 14-1):

L. Macro-level UT Design Process—Identifying view layer objects.
2. Micro-level Ul Design Activities.

3. Testing usability and user satisfaction.

4. Befining and iterating the design.

In spite of the great effort involved in developing user interfaces and the po-
tential costs of bad ones, many user interfaces are not evaluated for their usability
or acceptability to users, risking failure in the field, Bad user interfaces can con-
tribute to human error, possibly resulting in personal and financial damages [2].
Usability should be a subset of software quality characteristics. This means that
usability must be placed at the same level as other characteristics, such as relia-
bility, correctness, and maintainability [1]. Usability is an important characteristic
in determining the quality of the product. In this chapter, we look at usability test-
ing and issues regarding user satisfaction and its measurement. We study how to
develop user satisfaction and usability tests that are based on the use cases. The
use cases identified during the analysis phase can be used in testing the design.

CHAPTER 14: SYSTEM USABILITY AND MEASURING USER SATISFACTION 343

Once the design is complete, you can walk users through the steps of the scenar-
ios to determine if the design enables the scenarios to occur as planned.

14.2 USABILITY TESTING

The International Organization for Standardization (ISO) defines wsability as the
effectiveness, efficiency, and satisfaction with which a specified set of users can
achieve a specified set of tasks in particular environments. The ISO definition
requires

= Defining tasks. What are the tasks?

= Defining users, Who are the users?

* A means for measuring effectiveness, efficiency, and satisfaction. How do we

measure usability?

The phrase two sides of the same coin is helpful for describing the relationship
between the usability and functionality of a system. Both are essential for the de-
velopment of high-quality software [4]. Usability testing measures the ease of use
as well as the degree of comfort and sansfaction users have with the software.
Products-with poor usability can be difficult to leam, complicated to operate, and
misused or not used at all. Therefore, low product usability leads to high costs for
users and a bad reputation for the developers.

Usability is one of the most crucial factors in the design and development of a
product, especially the user interface. Therefore, usability testing must be a key
part of the UT design process. Umhuhtx__gatmg should begin in the early stages of
product development; for example, it can be used to gather information about how
users do their work and find out their tasks, which can complement use cases. You
can incorporate your findings into the usability test plan and test cases. As the de-
sign progresses, usability testing continues to provide valuable input for analyzing
initial design concepts and, in the later stages of product development, can be used
10 tesl specific product tasks, especially the UL

Usability test cases begin with the identification of use cases that can specify
the target audience, tasks. and test goals. When designing a test. focus on use cases
or tasks, not features. Even if your goal is testing specific features, remember that
your users will use them within the context of particular tazks. It also is a good
idea to run a pilot test to work the bugs out of the tasks to be tested and make cer-
tain the task scenarios, prototype, and test equipment work smoothly.

Test cases must include all use cases identified so far. Recall from Chapter 4
that the use case can be used through most activities of software development. Fur-
thermore, by following Jacobson's life cycle model, you can produce designs that
are tracenble across requirements, analysis, design, implementation, and testing.
The main advantage is that all design traces directly back 1o the user requirements.
Use cases and usage scenarios can become test scenarios; and therefore, the use
case will drive the usability, user satisfaction, and quality assurance test cases (see
Figure 14-2),

344 PART FIVE: SOFTWARE QUALITY

K=

QOA: Use-case model

Z X
K v S

Quality User Usability
assurance test satisfaction 15!
cages Test cages caAses
Test plan

FIGURE 14-2

The use cases identified during analysls can be used in testing the design. Once the design =
complete, walk users through the steps of the scenarios to delerming {f the design enables the
scenarios fo occur as planned.

14.2.1 Guidelines for Developing Usability Testing

Many techniques can be used to gather usability information. In addition to use
cases, focus groups can be helpful for generating initial ideas or trying out new
ideas. A focus group requires a moderator who directs the discussion about aspects
of a task or design but allows participants to freely express their opinions.

Usability tests can be conducted in & one-on-one fashion, as a demonstration,
or-as a “walk through.” in which you take the users through a set of sample sce-
narios and ask about their impressions along the way. In a technique called the
Wizard of Oz a testing specialist simulates the interaction of an interface. Although
these latter techniques can be valuable, they often require a trained, experienced
test coordinator [5]. Let us take a look at some guidelines for developing usabil-
ity testing:

= The usability testing should include all of a software’s components.

= Usability testing need not be very expensive or elaborate, such as including
trained specialists working in a soundproof lab with cne-way mirrors and so-
phisticated recording equipment. Even the small investment of tape recorder,
stopwatch, and notepad in an office or conference room can produce excellent
results.

= Similarly, all ests need not involve many subjects. More typically, quick, itera-
tive tests with a small, well-targeted sample of 6 to 10 participants ¢an identify
80-90 percent of most design problems.

= Consider the user’s experience as part of your software usability. You can study
£0-90 percent of most design problems with as few as three or four users if you
target only a single skill level of users, such as novices or intermediate level users.

= Apply usability testing early and often.

CHAPTER 14. SYSTEM USABILITY AND MEASURING USER SaTISFACTION 345

14.2.2 Recording the Usability Test

When conducting the usability test. provide an environment comparable to the rar-
get setting; usually a quiet location, free from distractions is best. Make partici-
pants feel comfortable. It often helps to emphasize that you are testing the soft-
ware, not the participants. If the participants become confused or frustrated, it is
no reflection on them. Unless you have participated yourself, you may be surprised
by the pressure many test participants feel. You can alleviate some of the pressure
by explaining the testing process and equipment.

Tandy Trower, director of the Advanced User Interface group at Microsoft, ex-
plains that the users must have reasonable time to try 1o work through any difficult
situation they encounter. Although it generally is best not to interrupt participants
during a test, they may get stuck or end up in situations that require intervention,
This need not disqualify the test data; as long as the test coordinator carefully
guides or hints around a problem. Begin with general hints before moving to spe-
cific advice. For more difficult situations, you may need to stop the test and make
adjustments. Keep in mind that less intervention usually yields better results. Al-
ways record the techniques and search patterns users employ when attempting to
work through a difficulty and the number and type of hints you have to provide them.

Ask subjects to think aloud as they work, so you can hear what assumptions
and inferences they are making. As the participants work, record the time they take
to perform a task as well as any problems they encounter. You may want to follow
up the session with the user satisfoction test (more on this in the next section) and
a questionnaire that asks the participants to evaluate the product or tasks they per-
formed.

Record the test results using a portable tape recorder or, better, a video camera.
Since even the best observer can miss details, reviewing the data later will prove
mvaluable. Recorded data also allows more direct comparison among multiple par-
ticipants. It usually is risky to base conclusions on observing a single subiject.
Recorded data allows the design team to review and evaluate the results.

Whenever possible, involve all members of the design team in observing the test
and reviewing the results. This ensures a common reference point and better design
solutions as team members apply their own insights to what they observe. If direct
observation is not possible, make the recorded results available to the entire team.

To ensure user satisfaction and therefore high-quality software, mieasure user
satisfaction along the way as the design takes form [3]. In the next section, we look
at the user satisfaction fest, which can be an invaluable tool in developing high-
qualily software,

14.3 USER SATISFACTION TEST

User satisfaction testing is the process of quantifying the usability test with some
measurable attributes of the test, such as functionality, cost, or ease of use. Us-
ability can be assessed by defining measurable goals, such as

* 93 percent of users should be able to find how to withdraw money from the ATM
machine without error and with no formal training.

3486 rFaRT FIVE: SOFTWARE QUALITY

= 70 percent of all users should experience the new function as “a clear improve-
ment over the previous one.”
* 90 percent of consumers should be able to operate the VCR within 30 minutes.

Furthermore, if the product is being built incrementally, the best measure of
user satisfaction is the product itself, since you can observe how users are using
it—or avoiding it [3]. A positive side effect of testing with a prototype is that you
can observe how people actually use the software. In addition to prototyping and
usability testing, another tool that can assist us in developing high-quality software
is measuring and monitoring user satisfaction during software development, espe-
cially during the design and development of the user interface. Gause and Wein-
berg have developed a user safisfaction test that can be used along with usability
testing. Here are the principal objectives of the user satisfaction test [3]:

¢ Aga communication vehicle between designers, as well as between users and
designers.

* To detect and evaluate changes during the design process.

* To provide a periodic indication of divergence of opinion about the current design.

* To enable pinpointing specific areas of dissatisfaction for remedy.

* To provide a clear understanding of just how the completed design is to be
evaluated. >

Even if the results are never summarized and no one fills out a questionnaire, the
process of creating the test itself will provide useful information. Additonally, the
test is inexpensive, easy to use, and it is-educational to both those who administer
it and those who take it.

14.3.1 Guidelines for Developing a User Satisfaction Test

The format of every user satisfaction test is basically the same, but its content is
different for each project. Once again, the use cases can provide you with an ex-
cellent source of information thronghout this process. Furthermore, you must work
with the users or clients to find out what attributes should be included in the test.
Ask the users 1o select a limited number (5 to 10) of attributes by which the final
product can be evaluated. For example, the user might select the following atrib-
utes for a customer tracking system: ease of use, functionality, cost, intuitiveness
of user interface, and reliability.

A test based on these attributes is shown in Figure 14-3. Once these attributes
have been identified, they can play a crucial role in the evaluation of the final prod-
uct. Keep these atiributes in the foreground, rather than make assumptions about
how the design will be evaluated [3]. The user must use his or her judgment to an-
swer each question by selecting a number between 1 and 10, with 10 as the most
favorable and 1 as the least. Commenis often are the most significant part of the test.
Gause and Weinberg raise the following important point in conducting a user satis-
faction test [3, p. 239]: "When the design of the test has been drafted, show it to
the clients and ask, ‘If you fill this out monthly (or at whatever interval), will it en-
able you 1o express what you like and don't like?' If they answer negatively then find
out what attributes would enable them to express themselves and revise the test.”

CHAPTERA 14 SYSTEM USABILITY AND MEASURING USER SATISEACTION 347

How do you rate the customer tacking project 4t this tme?

. & .7 & "5 4 3 % |
Ease of use: Very Easy Very Hard

Functionality: Very Functional Mot Fanctional

Cost: Very Incspentive VYery Expensive

Intuitive LAl Very Intuitive Very Hard to Folbow

m. 9. & V. 6.5 4 F % |
Relighility: Wery Relisbie Mot Relinble

Commenis:

OO bave more to say; | would like (0 see you

FIGURE 14-3
A customn form for user satistEction fesl

14.4 A TOOL FOR ANALYZING USER SATISFACTION: THE USER
SATISFACTION TEST TEMPLATE

Commercial off-the-shelf (COTS) saftware tools are already written and a few are

-available for analyzing and conducting user satisfaction tests. However, here, [

have selected an electronic spreadsheet to demonstrate how it can be used to record
and analyze the user satisfaction test. The user satisfaction test spreadsheet (USTS)
automates many bookkeeping tasks and can assist in analyzing the user satisfac-
tion test results. Furthermore, it offers a quick start for creating a user satisfaction
test for a particular project.

Recall from the previcus section that the tests need not involve many subjects,
More typically, quick, iterative tests with a small, well-targeted sample of 6 to
10 participants can identify 80-90 percent of most design problems, The spread-
sheet should be designed to record responses from up to 10 users. However, if
there are inputs from more than 10 users, it must allow for that (see Figures 14-4
and 14-5);

One use of a tool like this is that it shows patterns in user satisfaction level. For
example, a shift in the user sausfaction rating indicates that something is happen-
ing (see Figure 14-6). Gause and Weinberg explain that this shift is sufficient
cause 10 follow up with an interview. The user satisfaction test can be a tool for

348 PaAT FIVE: SOFTWARE QUALITY

Measuring User Satisfaction
Project Hame; Customer Tracking System

14 98T 8901
14

‘L_I*' 1 T 4587888 3N £ TBE o
Eozm of Uzm

Fesctimaal Lty 4
Iotuitivennms of |4
=18 1
Ealiaki] iy a

2
7
4
£
1
[

= |t A

!
3
0
[]
B
[

== =]=
BRI]
Iia|

e —
A user satisfaction test for a customer tracking system.

FIGURE 14-5
Amruﬂshnﬂmsmwmmamhmmlm&hrhmwlsdmnmm
‘time. A shift in the mﬂsﬂmﬂgiﬁﬂmﬁﬂmhrﬂg&mm

Measuring User Satisfaction

Project Name: Custosrr Trackis) Sywtes

Tesb #Fl. Tenl#2 Tewt# Test®d TesdtdS Tesl 96 -
Period 1 Periad 2 Period 3 Periodd Period 8 Period &

emrgll Avwrage 1] &)]] F
Dvmrall Migh 1] [] r [L)
Dremyml i Loss T = = i a 4
Cheanges Tmpr e i Eproaman T
Commerds

CHAPTER 14: SYSTEM USABILITY AND MEASURING USER SATISFACTION 349

Crviinll Lt BANELETRON
Shiy peet Tiorese

Wefigy
& T = R ey

Tiwsl &5
Panoa Penca Panod Fenod Paricd Periead
| A - 4 L] i
P

FIGURE 14-8 _ _
Periodical plotting can reveal shilts in user satisfaction, which can pinpoint a problem. Piotting
fhe high and low responses indicates where to go for maximum information (Gause and Wein-

finding out what attributes are important or unimportant. An interesting side effect
of developing a user satisfaction test is that you benefit from it even if the test is
never administered (o anyone; it still provides useful information. However, per-
forming the test regularly helps to keep the user involved in the system. It also
helps you focus on user wishes. Here is the user satisfaction cycle that has been
suggested by Gause and Weinberg:

1. Create a user satisfaction test for your own project. Create a custom form that
fits the project’s needs and the culture of your organization. Use cases are a
great source of information; however, make sure to involve the user in creation
of the test.

2. Conduct the test regularly and frequently.

3. Read the comments very carefully, especially if they express a strong feeling.
Never forget that feelings are facts, the most important facts you have about the
users of the sysiem.

4. Use the information from user satisfaction test, usability test, reactions to pro-
totypes, interviews recorded, and other comments to improve the product,

Another benefit of the user satisfaction test is that you can continue vsing it
even afier the product is delivered. The results then become a measure of how well
users are learning 1o use the product and how well it i5 being maintained. They
also provide a starting point for initiating follow-up projects [3].

350 euAT FIVE SOFTWARE QUALITY

14.5 CASE STUDY: DEVELOPING USABILITY TEST PLANS AND
TEST CASES FOR THE VIANET BANK ATM SYSTEM

In Chapter 13, we learned that test plans need not be very large; in fact, devoting
too much time io the plans can be counterproductive. Having this in mind let us
develop a usability test plan for the ViaNet ATM kiosk by going through the fol-
lowings steps (see Chapter 13).

14.5.1 Develop Test Objectives
The first step is to deveélop objectives for the test plan. Generally, test objectives are
based on the requirements, use cases, or current or desired system usage. In this case,
ease of use is the most important requirement, since the ViaNet bank customers
should be able to perform their tasks with basically no training and are not expected
to read a wser manual before withdrawing money from their checking accounts.
Here are the objectives to test the usability of the ViaNet bank ATM kiosk and
its user interface:

= 95 percent of users should be able to find out how to withdraw money from the
ATM machine without error or any formal training,
= 90 percent of consumers should be able to operate the ATM within 90 seconds.

14.5.2 Develop Test Cases

Test cases for usahility testing are skightly different from test cases for quality as-
surance. Basically, here, we are not testing the input and expected output but how
users interact with the system. Once again, the use cases created during analysis
can be used to develop scenarios for the usability test. The usability test scenarios
are based on the following use cases:

Deposit Checking (see Figure 6-10).

Withdraw Checking (see Figure 6-10).

Deposit Savings (see Figure 6-11).

Withdraw Savings (see Figure 6-11).

Savings Transaction History (see Figure 6-9).
Checking Transaction History (see Figure 6-9).

Next we need to select a small number of test participants (6 to 10) who have
never before used the kiosk and ask them to perform the following scenarios based
on the use case:

1. Deposit $1056.65 to your checking account.
2. Withdraw $40 from your checking account.

3. Deposit 3200 to your savings account.

4. Withdraw $55 from savings account.

5. Get your savings account transaction history.
6. Get your checking account transaction history.

Start by explaining the testing process and equipment to the participants to ease
the pressure. Remember to make participants feel comfortable by emphasizing that

CHAPTER 14: SYSTEM USABILITY AND MEASURING USER samisFacTion 351

Yyou are testing the software, not them. If they become confused or frustrated, it is
no reflection on them but the poor usability of the system. Make sure to ask them
to think aloud as they work, so you can hear what assumptions and inferences they
are making. After all, if they cannot perform these tasks with ease. then the 5yS-
tem 15 not useful,

As the participants work, record the time they take to perform a task as well as
any problems they encounter, In this case, we used the kiosk video camera to
record the test results along with a tape recorder. This allowed the design team 1o
review and evaluate how the participants interacted with the user interface, like
those developed in Chapter 12 (see Chapter 12, Figures 12-18 to 12-21). For ex-
ample, look for things such as whether they are finding the appropriate buttons eas-
ily and the buttons are the right size.

Once the test subjects complete their tasks, conduct a user satisfaction test to
measure their level of satisfaction with the kiosk. The format of the user satisfac-
tion test is basically the same as the one we studied earlier in this chapter (see Fig-
ure 14-3), but its content is different for the ViaNet bank. The users. uses cases,
and test objects should provide the attributes to be included in the test, Here, the
following attributes have been selected, since the ease of use is the main issue of
the user interface:

= Is easy to operate.

* Buttons are the right size and easily located,
* [s efficient to use,

= Is fun to use.

* Is visually pleasing.

* Provides easy recovery from errors.

Based on these attributes, the test shown in Figure 14-7 can be performed. Re-
member, as explained earlier, these attributes can play a crucial role in the evalu-
ation of the final product.

14.5.3 Analyze the Tests

The final step is to analyze the tests and document the test results. Here, we need
10 answer questions such as these: What percentage were able to operate the ATM
within 90 seconds or without error? Were the participants able to find out how to
withdraw money from the ATM machine with no help? The results of the analy-
sis must be examined,

We also need to analyze the results of user satisfaction tests. The USTS de-
scribed earlier or a tool similar 1o it can be used to record and graph the results of
user satisfaction tests. As we learned earlier, a shift in user satisfaction pattern in-
dicates that something is happening and a follow-up interview is needed to find
out the reasons for the changes. The user satisfaction test can be used as a ool for
finding out what attributes are important or unimportant. For example, based on
the user satisfaction test, we might find that the users do not agree that the system
“Is efficient to use.” and it got a low score. After the follow-up interviews, it be-
came apparent that participants wanted, in addition to entering the amount for
withdrawal, to be able to select from a list with predefined values (say, $20, $40,

352 PaRT FVE:

SOFTWARE QUALITY

Is-aty HO operate

can be located:

Is efficsent 1o use:

1% fun 1w use:

Iz visually plensing:

Comments:

O have foee (o say; |

Buttons are nght size and c-as_!ly

Privides sasy recovery [rom efrors!

How do you rate the Viahies bank ATM kiosk interface?
M 9 B T & -5 -4 3
Very Esay Wery Hanl

e

'\?Erlw.- AWLI.I! Mai A ppropriace

Yery Elficient Yery Inefficient

Fun Mo Fain

Wery Plemsing Mot Pleasing

Very Easy

Rogoviry Mt ok All

wild like to¥ee o,

FIGURE 14-7

& form for the ViaNal bank ATM kiosk user satisiaction @sl

$60. $80, 5100, and $200). This would speed up the process at the ATM kiosk.
Based on the result of the test, the Ul was modified to reflect the wishies of the
users {see Figure 14-8).

You need also 1o pay close attention o comments. especially if they express a
strong feeling. Remember, feelings are facts. the most important facts you have
about the users of the system.

14.6 SUMMARY

In this chapter, we looked at different dimensions of quality in software develop-
ment. We discussed the importance of the usability and user sausfaction tests. The
main point here is that you must focus on the users’ perception. Many systems thal
are adequate technically have failed because of poor user perception. This can be
prevented, or at least minimized, by utilizing usability and user satisfaction tests
as part of your Ul design process.

Usability testing begins with defining the target audience and test goals. When
designing a test, focus on tasks, not features. Even if your goal is testing specific
features, remember that your customers will use them within the context of par-
ticular tasks. The use cases identified during analysis can be used in testing your

CHAPTER 14: SYSTEM USABILITY AND MEASURING USER saTisFacTion 353

FIGURE 14-8

The CheckingAccountUl and SavingsAccountUl inteface objects for withdrawal modified bazed
mﬂﬂmbﬂltyanduwuhsh%tqaﬁ.huﬂammm aption of selecting quick with-
drawal or selecting other option and then entering the amount they want fo withdraw.

design, mmmem@isnmlmmcmmmmmsmﬁm
scenarios to determine if the design enables the scenarios (o occur as planned.
An interesting side effect of developing user satisfaction tests is that you benefit
from it even if the test is never administered 1o anyone; it still provides useful in-
formation. However, performing the test regularly helps keep the user acuw:ly in-
volved in the system development. It also helps us stay focused on the users’ wishes,

354 PART FIVE: SOFTWARE QUALITY

KEY TERMS

Commercial off-the-shelf software (p. 347)

Usability testing (p. 343)
User satisfaction testing (p. 345)

1. What is validation?
2. What is verification?
3, What is quality?
4. Why do we need usability testing? When do we use usability testing?
5. Why do we need to apply vsability testing early on? Why should we apply it often?
6. Why should usability testing include all components of the software?
7. What are some other techniques to gather usability information?
8. Describe the “Wizard of Oz" technique.
9. What is a user satisfaction test?

18, Why do we need to measure user satisfaction?

11. How do you develop a cusiom form for a user satisfaction test?

12, What is the significance of comments in a user satisfaction form?

PROBLEMS

1. Create a usér satisfaction test for-a bank system application.
2. Following an elaborate effort on your part to do things dght the first time, you decide 1o

develop the world's best user satisfaction test form (in your opinion!). After testing the
forms with the usgers, you come across the following response, “This form stinks!" What
should you do at this point?

REFERENCES

L

3]

6

Bochm, B.W.; Brown, J. R.; Kazpar, H.; Lipow, M.; Macleod, G.; and Merrit, M. Char-
acteristics of Software Quality. Amsterdam: TREW Sedes of Software Technology, North-
Holland, 1978,

. Chin, J. F; Diehl, V. A.; and Norman, K. L. "Development of an Instrument Measuring

User Satisfaction of the Human-Computer Interface.” Proceedings of the Computer-
Human Interaction CHI'88, pp. 213-18. Washington, DC.

. Gauwse, Donald; and Weinberg, Gerald. Exploving Requirements Quality Before Design.

MNew York: Dorset House, 1989,

. Sulaiman, Suziah. “Usability and the Software Production Life Cyele” Proceedings of

the Compurer-Himnan Interacrion CHI'96, pp. 61-2, (October, 1996}, British Columbia,
Canada.

. Thomas, Tamara. The Benefits of Writing a Good Test Plan, the Windows Interface

Guidelines, o Guide for Designing Software. Eedmond, WA; Microsoft Prezs, 1994,
Weinberg, Gerald M. Rethinking System Analyvels and Design. New York: Dorset House
Publishing, 1988,

Name Index

A

Aiken, Howard, 326

Akenhead, Scoit, 256

Alexander, Christopher, 72,
T3u-74, 86

Alter, Steven, 87

Anderson, Michael, 12, 56, §7,
149, 176

Appleton, Brad, 87, 216

Atkinson, M.P., 238, 239, 253, 279

B

Bailcy, PJ., 279

Bancilhon, E, 279

Beck, Kent, 62, 154, 169, 171a.
172, 176, 188, 196

Beizer, Bons, 340

Bell, Paunla, 139, 149, APA:1,

 APA:2S

Bergsirand, John, 12, 56, 87, 145,
176

Berson, Alex, 279

Binder, Robert V., 56, 340

Blaha, Michael, 3%, 87, 196, 216

Blum, Bruce 1., 43, 44, 56, 139,
149, 216, 340

Bobrow, D., 151, 176

Boehm, B.W., 43, 56, 354

Booch, Grady, 6, 8, 12, 38, 56, &2,
71, 78, B0u-<El, §7, 92u-93,
103, 122, 152, 154, 176, 177,
196

Brown, AL, 279

Brown, J.R., 354

Burnent, Margarer, 12
Buschmann, Frank, 72, 87

C

Callaway, Erin, 56, 336

Capuccian, Maria, 289, 321

Card, D., 57

Carroll, John M., 149

Cattell, Rick, 280

Chin, J.F, 354

Chow, Tsun 8., 340

Chrighiolm, K.J1., 279

Coad, Peter, 31, 38, 57, 62, 71, %7,
162, 176, 179, 196, 207, 210,
216, 340

Cockshott, WP, 279

Conger, Sue, 330, 340

Coplien, James O,, 73, 87

Coronel, Carlos, 280

Cox, BJ., 216

Cunningham, Ward, 62, 154, 169,
171, 171n, 172, 176, 188, 196

(&

Dxahl, O, 38

DeWilt, D, 279
Driehl, V.A., 354
Drittrich, Klaus R., 27%
Diollas, A., 57

E

Eddy, Frederick, 38, 7, 196, 216

Edwards, John, 12

Ericsson, Mara, 44u—45, 57, 87,
131, 149, 286, 321

Ewvans, Charlotte, 139, 149, APA:L,
APA2S

F

Finkelstein, Shel, 280

Forslund, David, 279

Fowler, Martin, 87, 122, 134, 137, 149
Freedman, Daniel P, 332, 340

G

Gabrel, R., 151, 176

Gamma, E., 72, 77, 87

Garfinkel, Simson L., 38

Gause, Donald, 125, 134u-135, 149,
235, 332, 340, 346, 349, 354

Gingrich, P., 103, 122

Goldberg, Adele, 12

Gonzalez, R.C.. 153, 176

Graham, lan, 12

Griss, M.L.. 207, 216, 340

Gruenberger, F, 326, 340

H
Harmon, Paul, 122, 176, 196
Helm, R, 72, &7

399

400 NAME INDEX

Hoperofi. Jobn E., 340
Hopper, Grace Murray, 326,329
Hunter, Richard, 52

1
Irving. Rick, 52
Ishikewa, Sara; 86

J

Jacobson, Agneta, 57, 87, 131, 149,
236, 321

Jacobson, Ivar, 6, 8, 12, 4du=—45,
46, 57, 62u-63, T1, 75,
fu-81, 87, 93, 132, 131,
135, 137, 149, 286, 321

Johnson, R, 72, 87

K

Kalakota, Ravi, 247u-248, 276
Kaspar, H., 354

Keller, Marilyn, 149

Kim, Won, 38, 279

King, Gary Warren, 12, 38
Kleyan, M., 103, 122
Kurgtsuchi, Brian T, 212, 216

L

LaLonde, Wilf K., 38, 1946
Lassesen, Kenneth M., 12
Latta, John, 297

Lee, Jubnyoung, 279

Lewis. Ted, 12

Lipow, M., 354

Lorenson, Bill. 38, 87, 1946, 216

M

MecClure, Carma, 52

Machiavelli, Niccola, 39

Macleod, G., 354

Mahoney, Michasl K., 38

Muaier, D,, 279

Marick, Brian, 331, 340

Martin, James, 122, 149, 152, 153,
76, 196, 216

Mellor, Stephen 1., 62, 87, 122,
162, 176

Mermit, M., 354

Meunier, Regine, 72, 87

Meyer, Bertrand, 87

Maorrisan, R., 279
Myers, G.J., 332, 337, 340

N

MNorman, K.L., 354

Norman, Ronald, 126, 149, 235
North, Ken, 279

Nypaard, K., 38

8]

Occam, William of, 203

Odell, James, 122, 149, 152, 153,
176, 196, 216

P‘

Perkinz, 5., 57

Premeriani, William, 38, 87, 196,
216

Pugh, John R., 38, 196

E

Rafii, F.. 57

Riehle, D, 72, &7

Rob, Peter, 280 _

Robertson-Dunn, Bernard, 248, 280

Rohnert, Hans, 72, 87

Ross, R, 162, 176

Rumbaugh, lames, 6. 8, 12, 38,
H2u-63, 78, 80u-81. &7, 93,
122, 179, 196, 216

s

Schmidt, Douglas C., 87

Seott, Kendall, 87, 122, 134, 137,
149

Shaw, M., 155, 176

Shein, Esther, 256

Shimamote, Glenn, 53, 336

Shlaer, Sally, 62, 87, 122, 162, 176

Short, Keith, 57, 87

Shumate, Ken, 149

Silverstein, Murray, 86

Sommeriad. Peter, 72, 87

Stal, Michael, 72, 87

Strachey, Christopher, 325u-326

Srunk, William, 139

Suh, MNam, 216

Sulaiman, Suziah, 321, 354

T

TFaylor, Lloyd, 280

Texel, Putnam, 235

Thomas, Tamara, 332, 334, 340,
154

Tow, J.T., 153, 176

Tristram, Clair, 52

Troswer, Tandy, 282, 321,345

Turban, Efraim, 89, 90, 122

U
Ullman, Jeffray, 340

L'
Yeblen, Thorstein, 135
Vhesides, 1, 72, 87

W

Watson, Mark, 122, 176, 196

Weinberg, Gerald M., 125,
134u~135, 149, 235, 332, 140,
346, 349, 354

Weller, Ed, 336

Whinston, Andrew, 278

White, 1., 139,151, 176

White, Set, 280

Wiener, Lauren, 62, 87, 154, 135,
178, 179, 189, 196

Wilkerson, Brian, 62, 87, 154, 155,
169, 172, 176, 179, 189, 196

Wilkinson, Stephanie, 297

William of Occam, 203

Williams, Charles B, 235

Williams, lan, 256

Wirfs-Brock, Rebecca, 62, 87, 154,
I55, 176, 179, 189, 196

Wirth, Miklaus, 4, 12

Y

Yourdon, Edward, 31, 38, 57, 62,
T1, 87, 162, 176, 179, 196,
207, 210, 216, 340

Z
Zdonik, §., 279 .
Zilllighoven, H., 72, 87

Subject Index

A
Abart, 244
Abstract class, 23, 161
Abstraction, 5
Absiract use case, 69, 133-134
Accelerators, AFB:4
Access classes, APAZ, APA:11-12
Access layer, 2737-280
clazges, 264=268 APA:Z_3,
APA;14-17
DBMS; see Database
management $ysiems
(DBMS)
distributed databases; see
Distributed databases
logical and physical databases,
243-244
concurrency policy, 244
shareability, 243-244
transactions, 244
multidatabase syitems (MDBS),
260-263
object-orented DBMS
(OODBMS), 252-255
traditiona] DEMS vs.,
254355
object-relational systems; see
Ohject-relational systems
object siore and persistence,
238-239
software development and, 84
ViaNet case study, 260-275

D&TE
COS

—_—

.-.I

AccountTransactionUT interface
object, 309, 315-316
HActions, 311-316
Activity diagrams, 109<111,
APA:T, APAA
Actors, 128, 131, 134-136
ViaMet case study, 141-146
Adjective classes, 155
noun phrase approach, 159-160
Aggregation, 27, 99, 178, 182-184
annsymmetry, 182
assembly, 183
collection-member, 154
container, 183
structures, APAS2 APA:3,
APAZLS, APACT6. APACLR
tramsitivity, 182
ViaNet case study, 137-188
Algorithm-centric methodalogy,
15
Alpha testing, 334
American Express Stored Vilue
Group, 52
Analbysis, 63
object model, 70, 90
phase, OOBE, 71
prototype, 43
Ancedtor, 181
Antipattems, 76
Antisymmetry, 182
A-part-of; see Aggrepation
A Pattern Language, 72

r SERTAL No :
ACCESS No;

LE

Apple Computer Co., 263
Applicable documents, APA:],
APA3
Application i
{API), 262263
Application windows (main
windows), 292-293,
299300
Assembly, 183, 187
Aszsociation, 177, 178-180, APA:D,
APAZ, APA:13-14, APA:16,
APACLE; xee also Class diagrarm
class; 97-93
common patterns, 179
communication, 179
defined, 178
derived, 180
directed actions {derived), 180
identifying, 179
implementation, 180
location, 179
meta-models and, 118
ravigation, 96
objects, 26-27
relationships, ViaMet case study,
185186
role, 95-96
class diagrams, 95-96
temary, 180
unnecessary, eliminating, 180
A Timeless Way of Building, 72
Atomic types of objects, 253

interface

401

402 sUBJECT INDEX

Attribute(s), 14; see also Object
relationships, attributes, and
methods

classes, 155

get, 225

of objects; 17-18

refining, class design, 221-223

reviewing, noun phrase approach.

160-161
set, 235
types, 221
Audienge, APA:L, APAZ
Axioms, 285
chject-ofented deésign (OO0D),
202-203

B
BankClient AccessUI interface
object, 309, 313
Bankers Trust, 53, 336
Bage, [B]
Base elasses, 23
Behavior, of ohjects, 18
Behavior diagrams; see Dynamic
modeling {hehavior diagrams)
Beta testing, 334
Binary association, 95
Bimary association notation, 95
Bitmap, AFPB:3-4
Black box testing, 328
Booch methodology, 6568
macho process, b6-67
conceptualization, 66
evolution, 67
implementation, 67
maintenance, 67
model analysisidevelopment,
6667
system architectire
designiereation, 67
micro process, 67-68
Bottom-up approach, 181, 186
Bottom-up testing, 330
Branch testing coverage, 329
Bull HN Information Systems
Inc,, 336
Business laver
closses, 266-267, APA:D,
APALL1-12, APACI3-14
object analysis; 127

software development and, B3-84

Business object analysis, 127

Business processing, 248

Business process modeling, OOA,
129

C
Candidate classes, noun phrase
approach, 136158
Capturing patterns, 7677
Cardinality, 26
Check boxes, APB.S
Checking AccountUT interface
object, 311
Chicago Manual of Style, 139
Clanty, modeling and, 91
Class/classes, 31-32, 265
class diagrams; see Class diagrams
designing, 217-235
attributes, refimng, 221-223
for VialNer Bank objects,
2237235
design patterns, 213
groupings, of objects, 16=17
higrarchy, 21-25
dynamic inheritance, 24
inheritance, 23-24
identification approaches,
154=-174
common patterns; see Common
class patterns approach
CRC, 1§9=172
noun phrase approach; see
Moun phrase approach
ise-case drven:
sequencefcollaboration
modeling, 164169
interface notation, 95
meta-classes, 34-35
methods and protocols; see
Methods and protocols;
classes
notation: stafie structure, 94, 95
object-oriented design (00D)
philesophy, 217-218
packages and, 230-232
pitfalls, avoiding, 226-227
process of, 219
relationship identification,
ViaMNet case stody, 134
responsibibities, and collaborators
(CRC), 169-172
UML OCL, 218-219
visibility of classes; see Visibility
of clagses
Clags diagrams, 94-101
wggregation and composiion {a-
part-of), 99
association class, 97-98
agsociation role, 95-96
binary association notation, 95

Class diagrams— Cent.
class notation
interface, 95
statie struchure, 94, 95
generalization, 99—101
multiplicity, 97
n-ary asiociation, 98-99
object dingram, 94
OR association, 97
qualifier, %6097
Classification, 151-176
class identification approaches;
rew Class/ciasses
defined, 152
naming classes, 172-174
theory of, 152153
Client-server association, 26
Client-server computing; ses
Dristributed dotshases
Cohesion, 206
Collaboration, 46
Caollaboration diagram, LML,
105-106
Collaboration modeling, 164-169
Collaborators, 169-172
Collection-member, 184, 187
Colors, guidelines for using,
300-302
Combo boxes, AFB:6-8
Command buttons, 298-299, APR-S
Command menus, 300
Commercial off-the-shelf (COTS)
zoftware, 347
Commit, 244
Common class patterns:approach,
162-164
concept class, 162
events class, 162, 163
organization class, 162, 163
people (person) class, 162, 163
places class, 162-163
tangible things and devices class,
163, 164
YiaMNet case study, 163-164
Common coapling, 205
Common cover, documentation, 139
Common objecl environment
{COE}, 251232
Common object request broker
architecture (CORBA),
251-252
Common vocabulary, noun phrase
approach, 158-159
Communication, use-case disgrams,
163

Communication association, 179,
185

Complex objects, 253

Component-based development
(CBID), 50

Component diagrams, 112

Computational completeness, 254

Computer-nided software
engineering (CASE), 49-30

Concept class, 162

Conceptualization, Booch
methedology, 66

Congrete use case, 133-134

Database management systems

(DBMS)—Cant
data. schema, 242
interface, 242-243
models, 240=241
hierarchical, 240
network, 241
relational, 241
multidatabase systems (MDBS),
260-263
query capabilities, 242243
structured query language (SQL),
242,243

suBJECT INDEX S03

Distribwted databages —Cont
components, 248
cooperative processing, 248-249
database processing, 248
distributed object computing
(DOC), 250-252
comman object request broker
architecture (CORBA),
231-252
Microsoft’s Active X/MHOOM,
.
distributed processing, 248249
three-tier architecture, 247, 256

Concurrency, 244, 254 views, 240 two-tier architecture, 247

Configuration control system, 335 Database processing, 248 user interface, 248

Canszervative policy, 244 Database schema, 242 Bristributed object computing

Constructor method, 225 Data-centric development, 15 (DOC), 250-252

Consumer-producer relationship, Data coupling, 205 Distributed processing. 248-249
26-27 Data definition language (DDL), Do {keyword), 108

Contained in, 185 242 Documentation, 47, 138-140

Container, 183, 187
Centenl coupling, 205

Data entry windows; see Forms and
data entry windows

Document template, APA:1-25
seope, APA:], APA:3

Context, patterns template, 74 Data flow, 64 applicable documents, APA:L,

Continuous testing, 80, 335-336 Data flow diagram (DFD), 93 APA

Control coupling, 205 Diata manipulation language audience, APA:L, APAY

Conversion method, 225 (DML), 242~243 organizalion, APA:1, APA:3

Cooperative processing, 248-240 Data quoery, 254 system requirements

Copy method, 225 Diata store, 64 specification

Corollaries, 202, 285 Debugging, 327 activity diagram of business
Mo, |, uncoupled design with Deep structures, paterns temnplate, process, APA:], APA:4

less information content, 75 applicable documents, APA:]

204-206
No. 2, single purpose, 204

problem statement, APA
UML class diagrams; see

Deployment diagrams, 112-114
Derived association, 180

Nuo. 3. large number of simpler Derived classes, 23 Unified modefing
classes (reusability), 204 Diesign pattems lznguage (UML)
No. 4, strong mapping, 204 frameworks vs., 78 testing, APA:15-25
No, 5. standardization. 204 object-oriented design (00D}, test cases, APATTE-25
Nuo. 6, design with inheritance, 2i2-214 usability testing scenarios,
204 Design phase, OOBE, 71 APA:24
OOD: see Object-oriented design Design rules, 203 user satisfaction testing,
(00D) micro level UL see Micro level APA25
Correciness, 43 LT desagn Domain object model, 70, 80
Correspondence, 43 Design with inheritance (corollary Domain prototype, 48-49
Coupling, 204-206: &), 204, 208-212 Domain specific method, 225
Cursor, APB:3 multiple inheritance, 211 Dow lones, 246
Cut-and-paste reusability, 210 Destructor method, 225 Draw message, 19
Dialog boxes, 292, 296-297, APB:3 Drive method, 26
Digitalk, 50) Drrop-down combo box, APBT
B} Diirected actions association, 180, Drop-down list, APB:7
Database I systems 185 Drvnamic behavior, pattemns
(DBMS), 237, 239-243 Digcriminator, 100 ~ template, 75
data definition language (DDL), Distributed component object Drynamic binding, 34, 254

242 model (DCOM), 252
data manipulation langunge Distributed databases, 245-349
(DML, 242-243 business processing, 248

Dynamic inheritance, 24
Dynamic modeling (behavior
dingrams), 91, 103114

404 sSUBIECT INDEX

Dynamic modeling—Cont.
UML collaboration diagram,
105106
UML interaction diagrams,
104=106
UML sequence diagrams,
104105

E
Edit boxes, APBA
Editing patterns, 77
Edit menu, 290
8020 rute, for docamentation,
139
Elements of Style, 139
Encapsulated objects, 253
Encapsulation, 20-21
Encapsulation leakage, 220
Entry event, 108
Emror-based testing, 327
Error messages, view layer, 206-297
Event-driven design, GUIL, APB:3
Events, 31, 311, 313-316
clazs, 162, 163
Evalution, Booch méthodalogy, 67
Exit event, 108
Extended Intelligence, Inc., 52
Exiends
assoclation, 133134, 145
use-case dingrams, 103
Extensibility, UML, 116-117
Extensible systems, 254
Externality entity, 64

F
Facet Décigon Systems, Inc., 256
Failures, hardware/software, 254
Familiarity, modeling znd, 91
Federated database systems, 261
Feedhack, micro level LI design, 201
File menuy, 299
Firing, 109
Fonis, APB:4

guidelines for using, 302
Forces, patterns template, 74, 735
Foreign key, 241
Formal clagses, 23, 161
Forms and data entry windows,

2072, 293208

Forward engineering, 255
dth Wave Inc., 297
Frameworks, T7T-78

design patterns vi., 78

Frazer Salmon Model, 256
Fuzzy categories, 155-156

L
Gartner Group Inc., 52
General Electric, 62
Generalization, 99-101
class diagrams, 99-101
hierarchy, 177, 181
Generative patterns, 73-74
Generativity, 74
Ciraphical operating system, APB:1
Ciraphical user interface (GUT),
281, 282, 297, APB:1-9
event-driven design, APBE:3
graphical operating systcm,
APB:1

objects, APB{3-4
accelerators, APB:4
bitmap, APB:3-4
check boxes, APB:S
combo hoxes, APB;6—8
cursor, APB:3
dinlog boxes, AFB:3
edit boxes, APB:4
fonts, APB:4
icons, AFB:3
list boxes, APB:6
menus, APB:3
push buttons, APB:5
radio buttons. APB:5
seroll bars, APB:§
slider buttons, AFB:8
spin boxes, APB:8
strings, APB:4
text, AFB:§
windows, how it works, APB:1-3
Guard conditions, 111

H

Hardware failures, 254

Help window, 300

Hierarchical models, DBMS, 240

High-quality software, building,
4244

Homogenization, 261

Horizontal prototype, 48

How model, 131, 131n

I
IBM, 38, 50, 321
lcons, APB:3

Identity, objects and, 32-34
If statements, 143
Implementation, 63
asgociation, 180
Booch methodology, 67
diagrams, 111-114
component diagrams, 112
deployment diagrams,
112-114
phase, OOBE, 71
use-case approach; see Use-case
approach
priate behaviors, inherifing,
211-212
Incremental testing, 53
Independence axiom, 202
Information axiom, 202
Information hiding, 20-21
Inheritance, 23-24, 253
and software quality testing. 331
table-inherited classes mapping,
158-259
Input, view layer classes, 284
Instance, 16
navigation, 259-260
varables, 20
Interaction disgrams, UML,
104106
Intestaceis)
behavior; events and actions,
APAE APACIR
behavior, ViaMet case study; see
View layer: interface objects
consistency of, 292
DEMS, 242-243
forgiving nature of, 291
objects; see View layer: interface
objects
simplicity (Ul design rle 1),
muero level UL design,
288-290
iransparency and naturalness (U1
design rule 2), 290
visual aspect of, 261
Intemal ransition compartment,
107
VO methods, 225
Irrelevant classes, [55
lterative development, 80

1
Jacobson methodalogies, 68-71
object-oriented business
engineering (OOBE), 71

Jacobson methodologies—Cont.
object-onented softwire
engineering (OOSE):
objectory, 70=71
use cases, 6869

K

Key mechanisms, pattems
template, 75

Keys for instance navigation,
259260

KISS method, 289

Known uses, patterns template,
75-76

L

Language errors, 327
Large number of simpler classes

[reusability (corollary 31], 204,

Late inding, 254
Layered approach, 82-84
access layers, ¥4
business layer, 83-84
wser interface (view) layer, 84
Layered architecture, 6
Lifeling, 104105
List boxes, APB:6
Location association, 179, 185
Logical and physical databases,
243-244
Logic errors, 327
Lower bound, 97

M
Macro development process, Booch
methodology: see Booch
mithodology
Macro level Ul design, 285~287,
305-308
Maintenance
Booch methodology, 67
modeling and, 91-92
MainUl object interface, 309,
313314
Measurable value, 131
Mediators, 269
Menus, APB:3
Messages, objects responding 1o,
18-20
Meta-classes, 3435
Meta-data, 230

Mema-model, 117-119
Metaphor, 290
Method, 16-17
Method classes, 265-266, 268, 274
Methodology, objeci-oriented
systems development, 4
Methods, 14, 191-192, APA:2,
APAZS, APA:14, APAIG-1T;
see also Object relationships,
attributes, and methods
for ViaMet Bank objects; see
ViaMet Bank ATM case
study
Metheds and protocols, classes,
2135397
simplification mules, 226
UML operation presentation, 227
ViaNet Bank objects, 227-230
account class create method,
229-230
gccount cliss deposit method,
228229
account class withdraw
method, 229
ATM machine cluss
operations, 230
BankClient class verify
password method, 228
checking aceount class
withdraw method, 230
Micro development process, Booch
methodology, 67-68
Micro level UT design, 285,
287-292
design rules, 288-292
feedback, immediate, 291
interface, forgiving nature of,
291
interface, visual aspect of, 291
interface stmplicity (Ul design
rule 1), 288-290
interface transparency and
naturalness (UT design
rule 23, 290
mode avoidance, 292
user control of software (UI
design rule 3), 280-292
ViaNet case study, 308-309
Migcrosoft, 28, 81, 251, 263,
282283, 294, 334, 345
Active X/DCOM, 252
Middleware, 245
Modal dialog, 292
Mode, 291, 292
Mode avoidance, 292

susJecT inpex 405

Model, 231
analysisidevelopment, Booch
methodalogy, 6667
constraints, UML, 116-117
defined, B9
dependency, 115-116
management, UML, 114-116
Muodeling: see also Unified
modeling language (UML)
reasons for, 91-92
Maotivation, design paitems,
212-213
Multidatabase systems (MDBS),
260-263

open database connectivity,
262-263
Multiple inheritance, 25, 181,
186, 211
hultiplicity, 97
Myers's debugging principles,
337

N
Mame, patterns template, 74
Name compartment, 107
MNaming o use case, 137
Naming classes, 172-174
N-ary association, 98-99, 180
Merwark models, DBEMS, 241
Meutralization, 261
Next to, 185
Nonanonymous reviews, patiems,
T
Nongenerative patterns, 73-T4
Note, UML, 117
Moun phrase approach, 134-162
adjective classes, 155, 159-160
attribute classes, 155
atrributes, posstble, reviewing,
160-161
candidate classes, 156-158
class purpose, reviewing, 161-162
common vocabulary, building,
158=159
inttial list of noun phrases,
156-158
irrelevant classes, 155
redundant classes, 155, 158-159
selecting classes from relevant
and fuzzy categones,
155-156
tentative elasses, identifying,
154155
ViaNet Bank ATM system, 156

406 suBJECT INDEX

O
Ohbject; see Objectis)
Ohbject analysis. see Object-onented
analygis (O0A)
Ohbject basics, 13-38
definition of, 14
Object constraint language {DCL),
2. 218219
Object containment, 27
Ohject design, 63
Ohbject dingram. 94
Object identifier (OID), 33
Object identity, 253
Ohject Management Group
(OMG), 251
Object modelsmodeling, 94, 131
Rumbaugh technique, 63
Object orientation, and testing of
software quality, 330-331
Object-oriented analysis (O0A],
To-80
classification; see Classification
use-case driven systems
development, 45-47
née case identification, 125-149
‘busginess object analysis, 127
business process modeling, 129
case smudy; ViaNet Bank ATM.
(4146
acior and use case
identification, 141-146
difficulty of, 126-127
documéentation, effective,
138~140
unified approach (LA} and, 128
use case model, see Use-case
miodel
Ohbject-griented approach, payroll
case study, 30-32
Object-oriented business
engineering (OOBE), 71
“Oibject-Orented Database System
Manifesto,” 253-254
Object-oriented DBEMS
(QDDBMS), 252-255
traditional DBMS vs., 254-255
Object-oriented design (OODY), 47,
0, 197-321
axioms, 202-203
of classes; see Classiclasses
corollaries, 203-212
Mo, 1, uncoupled design with
less information content,
203, 204-206
Meo. 2. single purpose, 204, 206

Object-onented design
(D0OD)—Cant.
corollaries—Cont
Mo, 3, large number of simpler
classes (reusability), 204,
W06=207
Mo. 4, strong mapping. 204,
M. 5, standardization, 204, 208
Mo, 6, design with inheritance,
204, 208-212
design patterns, 212-214
process, 200-202
Ohbject-orienied methodologies,
61-87
Booch methodology; see Booch

Jacobson methodologies; see
Jacobson methodologies
patterns; see Pamern(s)
Rumbaugh object modeling
techmgie; sé¢ Rumbaugh
e

survey of, 6263
unification of, 61-62
Object-oriented philosophy, 14=135
Object-oriented programming,
14-15
Object-oriented software
engineering (OOSE)
abjectory, 70-71
Object-oriented sysiems
development
book, organization of, 611
life cycle; see Systems
development life cycle
methodology, 4
olbiject orjentation, reasons for,
5-6
orthogonal views of software, 4
overview, 3=12
unified approach (LAY see
Unified approach (UA)
Object-oriented user interface
(QOUT), 282-283
Objectory, 70-T1
Object persistence, 34
Object reference, 33
Object-relational systems, 255-260
instance navigation, 239-260
object-relation mapping, 236-257
table-class mapping, 257-258
table-inherited classes
mapping, 238-250

Objeci-relational systems—Ceant,
table-multiple classes mapping,
258
Object-relation mupping, 256-257
Object retationships, atributes, and
methods, 177-196
aggregation, 178
a-part-of-structure, 178
association; see Association
attribute and method
identification, 168—189
amribute definition, 189-191
for the account class, 190-191
fior the ATM machine class,
191
for the transaction class, 191
ViaMet Bank, 190-191
class responsibility, 188-190
generalization hierarchy, 177
object responsibility: methods:
and messages, 191-192
LML diagrams and, 152
use cases and, 192
super-sulr class relationships,
181-182
super-sub structure, 177
ViaNet Bank ATM system case
study, [84-188
aggregition/a-purt-of
relationships, 187-188
association relationships,
185-186°
class refationship
ideniification, 184
super-sub relationships,
186-187
UML class diagram
development, 154-185
Object request brokers (ORBs),
51
Object responsibility: methods and
messages, 191-192
Object(s)
aggregations gnd object
containment, 27
attributes, 1718
behavior and methods; 15
class groupings of, 16-17
class hierarchy, 21-25
dynamic inheritance, 24
inheritance, 23-24
multiple inheritance, see
Multiple inheritance
cansumer-producer. association,
26-27

Object(s) —Cont.
defined, 15-16
dynamic binding, 34
encapsufation and information
hiding, 20-2
GUI; see Objects, GUIT
identity and, 32-34
messages, responding to, 18-20
mets-clasges, 34-35
object-oriented philosophy, 14—15
payroll case study; see Payroll
case study
palymorphism, 25-26
relationships and associations,
26-27
state and properties of, 17-18
static binding, 34
Ohbjects, GUL, APB:3-4
accelerators, APB:4
bitmap, APB:3-4
check boxes, APB:5
comba boxes, APB:6-8
cursor, APB:3
dialog boxes, APB:3
edit boxes, APB:4
fonts, APB:4
icons, APR:3
list baxes, APB:6
menus, APB:3
push buttons, APB:5
radio buttons, APB:S
soroll bars, APB:§
slider buttons, APB:8
spin boxes, APB:8
strings, AFBE:4
lext, APB:R
Object storage and interoperabiliy;
xee Access layer
Object wrapper, 250, 2500
Oecam’s razor, 203
OMT dynamic model, Rumbaugh
technigue, 6364
OMT functional model, Rumbasgh
technique, 64
Open database connectivity
(ODBC), 262-263
OR association, 97
Order. 178
Order object, 31
Organization, APA:1, APA:3
Organizition class, 162, 163
Originality, disregard of, patterns,
¥

Orthogonatl views of software, 4
Output, view layer classes, 284-285

P
Packages, APA:18
and classes, management of,
230-232
dividing use cases into, 137
UML, L14-118
VialNet case study, 146
Palettes, 300
Part of, 185
Part-whole relationship, 99
Path westing, 329
Pattem-Oriented Software
Architegture, 72
Patterni(g), 71=77
antipatterns, 76
capturing, 76-77
components of; see template
defined, 72-73
editing, 77
gencrative and nongenerative,
73-74
mining, 76
name, 212
NOMANCNYIMOUS Teviews, 71
originality, disregard of, 77
practicability, focus on,
T6=77
reviews, nonanonymous, 77
shepherding, 77
temnplate, 74-T76
context, 74
deep structures, 75
dynamic behavior, 75
eximples, 75
forces, 74, 75
key mechanisms, 75
known uses; 75-76
name, 74
preconditions, 74
problem, T4
proven solution to recurring
problem, 76
rationale, 75
recurring problem, proven
solution to, 76
related patterns, 75
resolution of forces, 75
resulting context, 75
side effects, 75
solution, 75
statie structure, 75
thumbnail sketch, 76
rade-offs, 74
thumbnail, 76
writers' workshops, 77

suBJECT INDEX 407

Payroll case study, 28-32
object-oriented approach,
30-32
structured approach, 28-30
People (persom) class, 162, 163
Per-class protection, 20
Per-object protection, 20
Persistence, 237-234, 254
object, 34
Persistent atiributes, 266
Persistent data, 238, 266
Persons; 31
Pessimistic palicy, 244
Places, 31
Places class, 162=163
Polymorphism, 25-26
Practicability, focus on, pattems,
T6-T7
Preconditions, patterns template; 74
Premature binding, 254
Primary key, 241
Frivate protocal (vizibility), 220,
221

Problem, patterns template, 74
Problem statement, APA4
Procedures, 14
Process, 64
Programming techniques, 5
Programs, defined, 4
Properties, 14, 16
Proposed repository, unified
approach (LFA), 81-82
Protected protocol (visibility), 220,
231,223
Protocols, 20-21, 219, 225-227
Proto-pattern, 73
Prototyping, 4749, 285
analysis prototype, 48
domain profotype, 45-49
horizontal prototype, 48
of the user interface, 302-304
wertical prototype, 48
Proven solution to recurring
problem, pattems template, 76
Public methods, 329
Public protocol (visibility), 220,
211

Push buttons, APB:S

Q

Qualificr, 96-97

Quality assurance; yee Software
quality assurance

(uery capabilities, 242-243

408 sueiecTiNDEX

14
Radio buttons, APB:5
Railroad paradoy, 134136
Fapid application development
(RADY, 51-52
Rationale
design pattens; 212-213
panterns template, 75
Receiver, 18
Recurring problent, patterns
template, 76
Redundant clagses, 155, 265, 268
review of. noun phrase approach,
158159
Referential imtegrity, 257
Regression testing, 334
Helated patterns, pattermns
template, 73
Relstional models, DBMS, 241
Relationships, 265, 268
-and dssociations, objects, 26-27
meta-models and, 118
Relevant categones, selecting
tlasges from, 155-156
Reyguest translation, 264263
access laver, 84
Requirament determination, 125
Resolution of forces. palterns
template, 75
Besulting contexl, patterns
iemplate, 75
Results translation, 265
-aceess layer, 54
Reusability, 5, 53, 181, 186
of tests, software quality
asgprance, 33
Reverse architecting, 76
Reverse engineening, 2535
Reviews, nonanonymous,
patterns, 77
Ribhons, 300
Roles, 46
Rumbaugh echnigue, 63—63
object model, 63
OMT dynamic model, 63-64
OMT functional model, 64
Run-time errors, 327

8
SavingsAccountUT, 311, 314-315
Scenaro-based testing, 328
Schema, 239
Scope, APACL, APA:3
applicable documenis, APA:L,
APAZ3

Scope, APAZL, APA:3—Com,
audience, APA:L, APAR
orgimization, APA: L, APA:3

Screen, APAS, APA:LR

Scroll bars, APB8

Second-gencration object-onented

methods, 62

Sequencefcollaboration modeling,

164169
Sequence diagrams; 104-105
Servio Logic, 242
Shareability, 243-244
Shepherding, patterns, 77
Side effects, pattens template, 75
Simple combo box, APB:6
Simplification
modeling and, 92
miles, class design, 226
Simula language, 15
Single purposs {cotoliary 2j,
204, 206

Shider buttons, APB:8

Software components, systems
development implementation,
50=51

software development
layered approach to; see Layersd

approach
life cvele (SDLC), 44-45
methodology, 3
process, 39, 40-42
transformation [(analysis), 40
transformation 11 (design),
40-41
transformation 111
(impleméntation), 41
Software failures, 2534
Software quulity assurance,
325-340
confnuous testing, 335336
inheritance and testing, 331
Myers's debugging pninciples,
37

object orientation and testing,
330-331

reusability of tests; 331

test cases, 3311-333

testing serategies, 328-330
black hox testing, 328
bottom-up testing, 330
branch testing coverage, 329
path testing, 329
stalement testing coverage,

iz)yl

top-down testing, 329-330
white box testing, 329

Software quality assurance— Conr
test plan, 333-335
ulpha testing, 334
beta testing, 334
configuration control $ystem,
335
objectives of test, 333
test analysis, 334
test case development, 334
tests for, 326-328
debugging, 327
error-hased resting, 327
language ermars, 327
logic errors, 327
nin-time errors, 327
scenarip-based testing, 328
syntax errors, 327
ugage-based testing, 328
WialNet case study, 337-338
Software CQiality Engineenng
Corp., 336
Solution, patems template, 75
Specializations, 186
Spin boxes, APB:B
Spring-loaded modes, 292
Swtmp coupling, 205
Sundardization (corollary 5), 204,
208
State and properiies, of objects,
17-18
Statechan dingrams, 106- 109
State diagram, |06
Statement testing coverage, 329
Static binding, 34
Static models, 5081
Static structure, 94
patterns lemplate; 73
Status bars, 300
Stepwise refinement, 23
Sterconypes, 117
Stop message, 18-19, 23, 24
Stored procedure, 257
Stnings, APB:4
Strong mapping (corollary 4), 204,
207-208
Strucured approach, payroll case
study, 28-30
Structured query language (SQL),
242, 243
Subolasses, 21, APA2 APAS,
APA:13, APACL6, APA:1B
Subsystem, 331
Sun Microsystems, 255-256
Sitperclasses; 21, 181, APA:L
APA:S, APACTS, APA:LG,
APA:1E

Super-sub relationships, 181-182,
1B6=187
Super-sub Structure, 177
Swimlane, 111
Synchronization bar, 109n
Syntax errors, 327
Syslem requirements specification
activity diagram of business
process, APA:L, APA4
applicable documents, APA:]
problem statement. APA:4
ML class diagrams, APA:2,
APA:B-18
access classes, APACZ,
APACTL-12
access layer classes, APA:2-3,
APA:14-17
a-part-of structures and
apgregation, APA:2,
APA:16
association, APA:Z, APA: LG
methods, APAS, APATA-17
subclagses, APA:L, APACTG
superclasses, APA:Z,
APA: 16
a-part-of structures or
aggregation, APA:Z,
APA:3, APA:13. APA:IE,
APA:LE
association, APAC2, APA:13-14
business chisses, APA:Z,
APALL-12
business layer classes, APA:Z,
APAT3-14
methods, APA:Z, APA: T4
packages, APALE
subclasses, AFA:Z, APA:]3
superclasses, APA:2, APA:13
user interface (view layer)
classes, APA:3, APA:
17-18&
a-part-of structures.
(mzgregation), APA:3,
APALR
association, APA:], APA:LE
interface behavior; events
and wctions, APA:S,
APA:LS
screen. APAS, APACIR
subclasses, APA3, APA IR
supercineses, APASS,
APACLE
view classes, APA:D,
APA:11-12
UML intersction diagrams,
APA2 APACR

System requirements-
specification—Con,
UML use case model, APA:1-2,
APA:4-8
Syitemsz, 89-8()
Systems architecture, Booch
methodology, 67
Systems design, 63
Systems development, 3
Systems development life eyele,
39-57
high-guality software, building,
42-44
reusability; ree Reusability
software development process;
see Software developmeni
use-cnge approach; ree Use-case
approach
Systemn usability and user
satisfaetion, 341-354
usability testing, 343-345
case study, 350-352
user satisfaction Iest,
345-344
templite for, 347-349

T
Table-clags mapping, 257=258
Table-inhenited classes
mapping, 258259
Table-multiple classes
mapping, 258
Tangible things and devices class,
163, 164
Template
patterns; fee Patternis)
for user satisfaction test, 347-349
Temative classes, identifying, noun
phrase approach, 154-155
Ternary agsociation, 180
Tests/testing, APA;[8-25
analysis, softwiare guality
assurance, 334
case development, software
quality assurance, 334
casgs, APAI18-25
seiftware gqoality assurance,
331-333
usability testing scenarios,
APAZ4
uger satisfaction festing,
APA:ZS
continuous, 80
maoddel, 70, 90
phass, OOBE, 71

suBJECT NDEY. 409

Testghesting —Canr.
plan, sofrware qualily assurance;
see Software quality
assurance
for quitlity assurance; see
Software quality assurance
test cases, APA:I18-25
usability testing scenarios,
APA:24
user satisfaction testing,
APAIDS
Text objects, APB:8
Theorem, 202
Things, 31
3-12 graphies, 297
Three-tigr architecture, 247, 256
Thumbnail sketch, paltemns, 76
Timeless Way of Building. a,
72
Toolbars, 300
Toolbazes, 300
Toal-driven modes, 292
Top-down approach, 181, 186
Top-down decomposition, 28-29
Top-down testing, 329-330
Trade-offs, patterns templite, 74
Transaction, use case model, 132
Transactional processing (TP), 250
Transactions, logical and physical
ditabasics, 244
Transformation 1 {analysis), 40
Transformation 1T (design),
4041
Transformation 111
(implementation), 41
Transient data, 238
Trangitivity, 182
Translate requests, sgcess layer, 84
Translate results, access layer. 84
Tuples, 241
Two-layered architecture, 82
Two-three rule, 135
Two-tier archilecture, 247

u
UML: s¢e Unified modeling
language (UML)
Uncoupled design with less
information content {corollary
13, 203, 204-206
Unification, of object-ariented
methodologies, 61-62
Unified approach (UA), 6, T8-84
continuous testng, J0
iterative development, 80

410 suBJECT INDEX

Unified approach (LA)—Cont, Unified modeling language—Cont. Usability testing, 343-345, APA:24

layered ‘approach to software diagrams— Cont. Usage-biased testing, 328
development; see Layered user interface (viewlayer) Use-case spproach, 46, 164-169
approach classes—Cont. development driven by, 70

mieling based on UML, 80-81 a-part-of Structures diagrams, 101103

object-oriented analysis (O0A), {aggregation), APA:3, identification of use cases
79-80 APA:18 unified appeoach (UA) and, 128

use case identification, 128
object-oriented design, 80
proposed repositary, 51-82

Unified Modeling Lunguage

Motation Guide Version 1.1, 93

Unified modeling language (UML),

6, 8-9, 62, 80-81, 89|22
activity disgram, 109-111
analysis object model, 90
attribute pregentation, 222-223
clarity and, 91
class diagrams; see Class

diagrams
diagrams, 93, APA:2, APA:E-18
access classes, APA2,
APAI11=12
access layer classes, APA:2-3,
APA:14-17
a-part-of struchures and
aggregation, APA:2,
APAILG
aszocistion, APA:Z, APA:16
methods, APA3, APA:16-17
subclasses, APA:D APAL16
superclasies, APA2,
APA:1G6
a-part-of structures or
agpregation, APA:Z,
APAS, APA:LS, APACLS,
APA:18
association, APA:2, APA:13-14
business classes, APA:2,
APA:11-12
business layer classes, APA:D,
APAI13-H4
cluss diagrams; see Class
development, ViaMNet case
study, 184183
methods, APA:2, APA:14

superclasses, APA:D, APA:|3

user interface (view liyer)
classes, APA:3, APA:17-
18

association, APA:S, APA:IE
interface behavior: events
and actions, APA:2
APACTE
soreen, APA:3, APA:LS
subclasses, APA:3, APA:1R
superclnszes, APACS, APACLR
view classes, APA2, APA:
11=12
domiain object model, 90
dynamic modeling; see Dynamic
modell.'n.g ibehavior

diagrams)

extenstbility, 116117

familiarity and, 91

implementation diagrams,
i11-114

coraponent disgrams, 112
deployment diagrams, 112114

interaciion dipgrams, 104—106,
APAZ, APACR

introduction Lo, 92=93

maintepance and, 91-92

meta-model, 117-119

model congtraints and comments;
116-117

modeling, reasons for, 91-92

model management: packages
and model orgamzation,
114=116

mode] organization, 114=116

note, 117 :

OCL, classes, designing, 218-119

operation presentation, class

ign, 237

packages, 114-116

simplification and, 92

statechart diagrams, 106-109

static models, 90-91

sterentype, 117

test model, 90

use-case diagram, 101-103

use case model, APACT-2,
APA-R

use-case tmodel, 90

Unique identifier (UID), 33
Unnecessary associations, 180
Upper bound, 97

VialNer case study, 141=146
Jacobson methodologies, 68-69
maodel for; see Use-case model
ohject responsibility: methods

and messages, 192
O0A; see Object-oriented

analysis (OOA)
systems development, 4453

analysis prototype, 48

domain prototype, 48-49

horizontal prototype, 48

implementation, 49-52

componeni-based
development (CBD, 50
computer-aided software
engineering (CASE),
49-50
rapid application
development (RAD),
51-52
software componenis, 50-51
incremental testing, 53
object-oriented analysis
(OO, 45-47
object-orented design
(O0D), 47
prototyping, 4749
vertical prototype, 48
Use-case model, 46, 70, 90,

129-138
actors, 131, 134-136
detail and, 136—137
extends association, 133-134
guidelines for finding use cases,

136
measurable value, 131
naming a use case, 137
packages

dividing use cases into, 137

Viabet case study, 146
transaction, 132
use case defined, 131
uses association, 133-134

User-centered interface,
2R7-288

User control of software (UT design
ruls 3), 200-292

Use relationship, 26

User interface, 248, APA:3,
APA:1T-18; see also View
layer: interface objects

‘software development and, 84

User satisfaction; se# also System
usability and user satisfaction

lesting, APA:DS

Uses, use-oase diagrams, 103

Uses association, 133134

v
Validation, 43, 341
Verification, 43, 341
Vertical prototype, 48
ViaMNet Bank ATM case study
access layer design, 269-275
attributes
defining, 190191
refining, 223225
account class, 233114
ATM machine class, 224
BankClient class, 223
checking account class, 224
savings account class,
224-225
transaction class, 224
class identification, 156

comimon cliss pattens approach,

163164
CRC, 171-172
document template; see
Document templaie
methods definition, 192-194
account class opérations,
192-193
BankClient class operations,
193
checking account class
aperations, 193-194
objects, class design methods
and protocols, 227-230
mccoum class create method,
229-330
accoum class depesit method,
228-229
account class withdraw
method, 229
ATM machine class
operations, 230

ViaMet Bank ATM case

study—=Conr,
objects, class design methods
and protocols— Canr
BankClient class verify
password method, 228
checking aceount class
withdraw method, 230
relationship analysis; see Object
relationships, attributes, and
methods
sequence/collaboration medeling,
165-169
softwiare gquality sssurance,
337338
system usability testing, 350352
use case identification; see
Ohbject-onented analysis
(O0A)
user interface design; see View
layer: mierface objects
View clusses, APAT, APA]1-12
¥iew layer: interface objects,
281-321
application windows (main
windows), 292-293
colors, guidelines for using,
300302
command button layout,
208-209
command menus, 300
dialog boxes, 292, 296=-297
edit mena, 299
eror messages, 296-297
file menu, 299
fonts. guidelines for using, 302
forms and data entry windows,
292, 2937946
help window, 300
macro level desipn process,
2B5-287
micro level Ul design; see Micro
level Ul design
ohject-oriented user interface
(OOLT), 282-383
prototyping the user interface,
302304
purpase of, 292-302
status bars, 300
toolbars, 300

susJEcT INOEx 411

View layer: interface objects—Cont,

uger interface
design of, as creative process,
281-284
prototyping of, 302-304
ViaNet Bank ATM case study,
34-316
AccountTransictionUL
interface object, 309,
315-316
BankClient AccessUlL 309, 313
Checking AccountU] interface
ohject, 311
interface behuvior, defining,
311-316
macro process, 305-308
MainUl object interface, 309,
313-314
miero process, 308-309
SavingsAccoumUL 311,
314-315
view layer classes, 284285
view menn, 300
window menu, 3
View menu, 300
Visibility of ¢lasses, 219-221
encapsulation leakage, 220
private protocal, 220, 22}
protected protocol, 220, 221, 223
protocol, 219
public protocol, 220, 221
Wocabulary, documeritation and,
139

W
Waterfall approach, 41, 41n
White box testing, 329
Windows
how it works, AFB:1-3
menu, 300
messages, APB:1
Wizand of Oz, 344
Works for, 185
Writers” workshops, patterns, 77

b
Year 2000 (Y2ZK) problem, 29%6n

