

 [DATA STRUCTURES]

Chapter Chapter Chapter Chapter ---- 00001111 : : : : ““““IntroductionIntroductionIntroductionIntroduction to Data Structuresto Data Structuresto Data Structuresto Data Structures””””

� INTRODUCTION TO DATA STRUCTURES

 A Data type refers to a named group of data which share similar properties or
characteristics and which have common behavior among them. Three fundamental data
types used in C programming are int for integer values, float for floating-point numbers
and char for character values.
 But, sometimes a need arises to treat a group of different data types as a single
unit. For example, a record in a file can have several fields of different data types and
entire record may be required to be processed in one unit. In such a case, Data
structures can be beneficial as data structures let you combine data of different types
and process them together.

Def : A Data structure is a named group of data of different data types which can be
processed as a single unit.

Data structure is representation of the logical relationship existing between
individual elements of data. In other words, a Data structure is a way of organizing all
data items that considers not only the elements stored but also their relationship to each
other.

Data structures are the building blocks of a program. And hence the selection of
particular data structure stresses on the following two things :

1. The data structures must be rich enough in structure to reflect the relationship
existing between the data.

2. And the structure should be simple so that we can process data effectively
whenever required.

The identification of the inbuilt data structure is very important in nature. And the

structure of input and output data can be use to derive the structure of a program. Data
structures affects the design of both structural and functional aspects of a program.
 Algorithm + Data structure = Program

We know that an algorithm is a step-by-step procedure to solve a particular
function i.e., it is a set of instructions written to carry out certain tasks and the data
structure is the way of organizing the data with their logical relationship maintained.
To develop a program of an algorithm, we should select an appropriate data structure for
that algorithm. Therefore, algorithm and its associated data structures form a program.

 CLASSIFICATION OF DATA STRUCTURE

Data structures are normally divided into two broad categories.

(i) Primitive Data Structures(built-in)
(ii) Non-Primitive Data Structures(user defined)

Fig.(1) : Classification of Data structure.

 PRIMITIVE DATA STRUCTURES (BUILT-IN) :

These are basic structures and are directly operated upon by the machine

instructions. These, in general, have different representations on different computers.
Integers, floating-point numbers, character constants, string constants, pointers etc. fall in
this category.

DATA
STRUCTURE

Primitive Data Structure Non-Primitive Data Structure

Integer Float Character Pointer Arrays Lists Files

Linear Lists Non-Linear Lists

Stacks Queues Graphs Trees

 NON-PRIMITIVE DATA STRUCTURES (USER-DEFINED)

These are more complicated data structures. These are derived from the primitive
data structures. The non-primitive data structures emphasize on structuring of a group of
homogeneous (same type) or heterogeneous (different type) data items. Arrays,
structures, lists and files are examples.
 The data appearing in our data structures are processed by means of certain
operations. In fact, the particular data structure that one chooses for a given situation
depends largely on the frequency with which specific operations are performed.

 OPERATIONS OF DATA STRUCTURES

The basic operations that are performed on data structures are as follows :

1. Traversing : Accessing each record exactly once so that certain items in the record

may be processed. (This accessing and processing is sometimes called “visiting”
the record).

2. Searching : Searching operation finds the presence of the desired data item in the
list of data item. It may also find the locations of all elements that satisfy certain
conditions.

3. Inserting : Inserting means addition of a new data element in a data structure.
4. Deleting : Deleting means removal of a data element from a data structure.

Sometimes, two or more of the operations may be used in a given situation. For

e.g, we may want to delete a data element from a data structure, which may mean we first
need to search for the location of the record.

The following two operations, which are used in special situations, will also be
considered :

(1) Sorting : Sorting is the process of arranging all data items in a data structure in a

particular order say for example, either in ascending order or in descending order.
(2) Merging : Combining the records of two different sorted files into a single sorted

file.

 EXAMPLES & REAL LIFE APPLICATIONS

A company contains employee file in which each record contain the following data
for a given employee :

Name, Address, Telephone number, Employee age, sex , employ number.

1. Suppose the company wants to announce a meeting through a mailing. Then one

would traverse the file to obtain employee name and address for each member.

2. Suppose one wants to find the name of all members living in a certain area. Again one
would traverse the file to obtain the data.

3. Suppose one wants to obtain address for the given employee name. Then one would
search the file for the record containing employee name.

4. Suppose a new person joins the company. Then one would insert his or her record
into the file.

5. Suppose an employee dies. Then one would delete his or her record from the file.
6. Suppose an employee has moved and has a new address and telephone number.

Given the name of the member, one would first need to search for the record in the
file. Then one would perform the “update”- i..e., change items in the record with the
new data.

7. Suppose one wants to find the number of members 65 or older. Again one would
traverse the file, counting such members.

 DESCRIPTION OF VARIOUS DATA STRUCTURES

1. ARRAYS

An array is defined as a set of finite number of homogeneous elements or data
items. It means an array can contain one type of data only, either all integers, all floating-
point numbers, or all characters. Declaration of arrays is as follows :

int A[10];

where int specifies the data type or type of elements array stores. “A” is the name of
the array, and the number specified inside the square brackets is the number of elements
an array can store, this is also called size or length of array.

Some important concepts of arrays are :
(1) The individual element of an array can be accessed by specifying name of the array,

followed by index or subscript (which is an integer number specifying the location of
element in the array) inside square brackets. For example to access the fifth element
of array a, we have to give the following statement :

A[4];
(2) The first element of the array has index zero [0]. It means the first element and last

element of the above array will be specified as :
A[0], and A[9] respectively.

(3) The elements of array will always be stored in consecutive memory locations.

(4) The number of elements that can be stored in an array i.e., the size of array or its

length is given by the following equation :
(upperbound – lowerbound) + 1

For the above array, it would be (9-0) + 1 = 10. Where 0 is the lower bound of array,
and 9 is the upper bound of array.

(5) Arrays can always be read or written through loop. If we read a one-dimensional
array, it requires one loop for reading and other for writing (printing) the array. For
example :

(a) For reading the array
 for (i = 0; i < = 9 ; i++)
 {

 scanf(“%d”, & A [i]);
 }

 (b) For writing the array
 for (i = 0; i < = 9 ; i++)
 {

 printf(“%d ”, A [i]);
 }

 If we are reading or writing two-dimensional array it would require two loops. And
similarly the array of n dimension would required n loops.

Some common operations performed on arrays are :

1. Creation of an array.
2. Traversing an array (accessing array elements).
3. Insertion of new elements.
4. Deletion of required element.
5. Modification of an element.
6. Merging of arrays.

2. LINKED LISTS

A linked list is a linear collection of data elements, called node pointing to the next nodes
by means of pointers. Each node is divided into two parts : the first part containing the
information of the element, and the second part called the link or next pointer containing the
address of the next node in the list. Technically, each such element is referred to as a node,
therefore a list can be defined as a collection of nodes as shown in Fig. (2) below :

 START (START stores the address of first node)

 1000 Node 1 Node 2 Node 3
 Info Link Info Link Info Link

 2 2000 4 3000 6 NULL

 1000 2000 3000

 Memory addresses of various nodes

Fig. (2) Linked Lists

3. STACKS

A stack is a non-primitive linear data structure. It is an ordered list in which addition

of new data item and deletion of already existing data item is done from only one end,
known as Top of Stack (TOS). As all the deletion and insertion in a stack is done from top
of the stack, the last added element will be the first to be removed from the stack. Due to
this reason, the stack is also called Last-In-First-Out (LIFO) type of list. Consider some
examples,
���� A common model of a stack is plates in a marriage party. Fresh plates are “pushed”

onto the top and “popped” off the top.
���� Some of you may eat biscuits. If you assume only one side of the cover is torn and

biscuits are taken off one by one. This is called popping and similarly, if you want to
preserve some biscuits for some time later, you will put them back into the pack
through the same torn end called pushing.

4. QUEUES

 Queue is a linear data structure that permits insertion of an element at one end and
deletion of an element at the other end. The end at which the deletion of an element take place is
called front, and the end at which insertion of a new element can take place is called rear. The
deletion or insertion of elements can take place only at the front and rear end of the list
respectively.
 The first element that gets added into the queue is the first one to get removed from the
list. Hence, Queue is also referred to as First-In-First-Out (FIFO) list. The name ‘Queue’ comes
from the everyday use of the term. Consider a railway reservation booth, at which we have to get
into the reservation queue. New customers got into the queue from the rear end, whereas the
customers who get their seats reserved leave the queue from the front end. It means the
customers are serviced in the order in which they arrive the service center (i.e. first come first
serve type of service). The same characteristics apply to our Queue. Fig. (3) shows the pictorial
representation of a Queue.

 Front Rear

Fig. (3) : Pictorial representation of a Queue

 In Fig (3), 10 is the first element and 80 is the last element added to the Queue. Similarly,
10 would be the first element to get removed and 80 would be the last element to get removed.

5. TREES

A Tree can be defined as a finite set of data items (nodes). Tree is a non-linear type of
data structure in which data items are arranged of stored in a sorted sequence. Trees represent
the hierarchical relationship between various elements. In trees :
1. There is a special data item at the top of hierarchy called the Root of the Tree.
2. The remaining data items are partitioned into number of mutually exclusive (i.e. disjoint)

subsets, each of which is itself, a tree, which is called the subtree.
3. The tree always grows in length towards bottom in data structures, unlike natural trees which

grows upwards.
The tree structure organizes the data into branches, which relate the information. A tree is

shown in Fig. (4).

 A

 B C

 D E F G

 Fig. (4) : A Tree

6. GRAPHS

Data sometimes contain a relationship between pairs of elements which is not necessarily
hierarchical in nature. Geometrical arrangement are very important while working with real life
projects. For example, let us suppose there are five villages separated by a river. Now we want to
construct bridges to connect these villages as shown in Fig. (5)

10 20 30 40 50 60 70 80

 Fig. (5)

We can reduce the landmass of villages to a dot and we can change the shape of bridges.
This will not change geometric arrangement of paths to connect different villages. We can draw a
similar geometry of our project as follows :

 v1 v2

 v3

 v4 v5

 Fig. (6)

We have represented villages by dots (which are called vertex or node) and bridges by
lines which are called edges. This type of drawing is called graph. Hence a graph can be defined
as a ordered set (V,E), where V(G) represents the set of all elements called vertices and E(G)
represents the edges between these vertices.

Fig. (6) shows a graph, for which V(G)={ v1, v2, v3, v4, v5 } and E(G) = { b1, b2, b3, b4 }.

Village 1

Village 3

Village 4

Village 2

Village 5

