PROGRAM :-01

AIM: INTRODUCTION TO JAVA.
Origin

In 1991, James Gosling lead a team at Sun Microsystems that developed the first version of Java(Oak) (which was not yet called Java). It was designed for programming home appliances.

Basics

Java uses a two-step translation process. The programs are first translated into an intermediate language i.e. same for all systems then a small easy to write and inexpensive program translates this intermediate language into the machine language for a particular computer/machine.

Java Technology

As a development environment, Java technology provides you with a large suits of tools:
· A compiler (javac)
· A interpreter(java)

Object and Methods

Java is an object-oriented programming language, abbreviated OOP.
Oops is a programming methodology that views a program as similarly consisting of objects that interacts with each other by means of action.
Object oriented programming has its own specialized terminology. The objects are called, appropriately enough, objects. The actions that an object can take are called methods.

A java application program is a class with a method named main, and when you run the java program the run-time system automatically invokes the method named main.

There are two kinds of java programs

· Applets (Program that run from a web browser).
· Applications (Program that run on computer like other programs).

FEATURES OF JAVA

Platform Independent
The concept of Write-once-run-anywhere (known as the Platform independent) is one of the important key feature of java language that makes java as the most powerful language. Not even a single language is idle to this feature but java is more closer to this feature. The programs written on one platform can run on any platform provided the platform must have the JVM.

Simple
There are various features that makes the java as a simple language. Programs are easy to write and debug because java does not use the pointers explicitly. It is much harder to write the java programs that can crash the system but we can not say about the other programming languages. Java provides the bug free system due to the strong memory management. It also has the automatic memory allocation and deallocation system.

Object Oriented
To be an Object Oriented language, any language must follow at least the four characteristics.

Inheritance :	 It is the process of creating the new classes and using the behavior of the existing classes by extending them just to reuse the existing code and adding the additional features as needed.

Encapsulation: It is the mechanism of combining the information and providing the abstraction.

Polymorphism : As the name suggest one name multiple form, Polymorphism is the way of providing the different functionality by the functions having the same name based on the signatures of the methods.

Dynamic binding : Sometimes we don't have the knowledge of objects about their specific types while writing our code. It is the way of providing the maximum functionality to a program about the specific type at runtime.

As the languages like Objective C, C++ fulfills the above four characteristics yet they are not fully object oriented languages because they are structured as well as object oriented languages. But in case of java, it is a fully Object Oriented language because object is at the outer most level of data structure in java. No stand alone methods, constants, and variables are there in java. Everything in java is object even the primitive data types can also be converted into object by using the wrapper class.

Robust
Java has the strong memory allocation and automatic garbage collection mechanism. It provides the powerful exception handling and type checking mechanism as compare to other programming languages. Compiler checks the program whether there any error and interpreter checks any run time error and makes the system secure from crash. All of the above features makes the java language robust.

Distributed
The widely used protocols like HTTP and FTP are developed in java. Internet programmers can call functions on these protocols and can get access the files from any remote machine on the internet rather than writing codes on their local system.

Portable
The feature Write-once-run-anywhere makes the java language portable provided that the system must have interpreter for the JVM. Java also have the standard data size irrespective of operating system or the processor. These features makes the java as a portable language.

Dynamic
While executing the java program the user can get the required files dynamically from a local drive or from a computer thousands of miles away from the user just by connecting with the Internet.

Multithreaded
As we all know several features of Java like Secure, Robust, Portable, dynamic etc; you will be more delighted to know another feature of Java which is Multithreaded. Java is also a Multithreaded programming language. Multithreading means a single program having different threads executing independently at the same time. Multiple threads execute instructions according to the program code in a process or a program. Multithreading works the similar way as multiple processes run on one computer.

Architecture Neutral
The term architectural neutral seems to be weird, but yes Java is an architectural neutral language as well. The growing popularity of networks makes developers think distributed. In the world of network it is essential that the applications must be able to migrate easily to different computer systems. Not only to computer systems but to a wide variety of hardware architecture and Operating system architectures as well. The Java compiler does this by generating byte code instructions, to be easily interpreted on any machine and to be easily translated into native machine code on the fly. The compiler generates an architecture-neutral object file format to enable a Java application to execute anywhere on the network and then the compiled code is executed on many processors, given the presence of the Java runtime system. Hence Java was designed to support applications on network. This feature of Java has thrived the programming language.

Compiler/Interpreter Combo
Code is compiled to bytecodes that are interpreted by a Java virtual machines (JVM) .This provides portability to any machine for which a virtual machine has been written. The two steps of compilation and interpretation allow for extensive code checking and improved security.

Several dangerous features of C& C++ eliminated

· No memory pointers
· No preprocessor
· Array index limit checking

Automatic Memory Management
Automatic garbage collection - memory management handled by JVM.

Security
No memory pointers
Programs runs inside the virtual machine sandbox.
Array index limit checking
Code pathologies reduced by

· bytecode verifier - checks classes after loading
· class loader - confines objects to unique namespaces. Prevents loading a hacked "java.lang.SecurityManager" class, for example.
· security manager - determines what resources a class can access such as reading and writing to the local disk.

Good Performance
Interpretation of bytecodes slowed performance in early versions, but advanced virtual machines with adaptive and just-in-time compilation and other techniques now typically provide performance up to 50% to 100% the speed of C++ programs.

Built-in Networking
Java was designed with networking in mind and comes with many classes to develop sophisticated Internet communications. Features such as eliminating memory pointers and by checking array limits greatly help to remove program bugs. The garbage collector relieves programmers of the big job of memory management. These and the other features can lead to a big speedup in program development compared to C/C++ programming.

Program to implement interface.

interface MyInterface
{
 void display(String str);
}

class interfacer implements MyInterface
{

public void display(String str)
 	{
 System.out.println("\n Impementing "+str);
 }
}

public class interf
{
 public static void main(String[] args)
 {

 interfacer isr=new interfacer();
 isr.display("Interface");

 }
}

Output:

Implementing Interface

Program for alphabetical ordering of strings.

import java.io.*;

public class sort
{

 public static void main(String[] args) throws IOException
 {
 InputStreamReader isr=new InputStreamReader(System.in);
 BufferedReader br=new BufferedReader(isr);

 String str;
 int len;
 char[] ch=new char[50];

 char temp;
 System.out.println("\n Enter the string");
 str=br.readLine();

 len=str.length();
 for(int i=0;i<len;i++)

 ch[i]=str.charAt(i);
 for(int i=0;i<len;i++)
 {

 for(int j=0;j<len-i-1;j++)
 {
 if(ch[j]>ch[j+1])
 {
 temp=ch[j];
 ch[j]=ch[j+1];

 ch[j+1]=temp;

 }
 }
 }

 String str1=new String(ch);
 System.out.println("\n Sorted string is : "+str1);

 }

Output:

Enter the string jatin
Sorted string is : aijnt

PROGRAM:-02
AIM: Learn Visual Basic environment and develop simple calculator.
Source Code:-
Private Sub Form_Load()
Text1.Text = " "
End Sub

Private Sub Digits_Click(Index As Integer)
If Cleardisplay Then
Text1.Text = " "
Cleardisplay = False
End If
Text1.Text = Text1.Text + Digits(Index).Caption
End Sub
Private Sub ClearBttn_Click(Index As Integer)
Text1.Text = " "
End Sub
Private Sub DotBttn_Click(Index As Integer)
If InStr(Text1.Text, ".") Then
Exit Sub
Else
Text1.Text = Text1.Text + "."
End If
End Sub

Private Sub MinusSign_Click(Index As Integer)
Op1 = Val(Text1.Text)
Opr = "-"
Text1.Text = " "
End Sub

Private Sub MulSign_Click(Index As Integer)
Op1 = Val(Text1.Text)
Opr = "*"
Text1.Text = " "
End Sub

Private Sub PlusSign_Click()
Op1 = Val(Text1.Text)
Opr = "+"
Text1.Text = " "
End Sub

Output:-
[image:]

[image:]
PROGRAM :-03
AIM: Genrate an editor screen containing menus using JAVA.

Source code:-
//THE IMPORTED LIBRARIES
import java.awt.*;
import java.awt.event.*;

class Editor extends Frame
{
 TextArea ta;
 public static void main(String arg[])
 {
 new Editor ();
 }

Editor ()
{
setSize(300,300);
setLocation(20,30);

//Create Menubar
MenuBar mbar=new MenuBar();
setMenuBar(mbar);

//Crate the Menu & Menu Items

Menu file=new Menu("File");
MenuItem new1=new MenuItem("New");
MenuItem open=new MenuItem("Open");
MenuItem save=new MenuItem("Save");
MenuItem exit1=new MenuItem("Exit");
file.add(new1);file.add(open);file.add(save);file.add(exit1);
mbar.add(file);

Menu edit=new Menu("Edit");
MenuItem cut=new MenuItem("Cut");
MenuItem copy=new MenuItem("Copy");
MenuItem paste=new MenuItem("Paste");
edit.add(cut);edit.add(copy);edit.add(paste);
mbar.add(edit);

Menu help=new Menu("Help");
MenuItem help1=new MenuItem("Help Topics");
MenuItem help2=new MenuItem("About Notepad");
help.add(help1);help.add(help2);
mbar.add(help);

ta=new TextArea();
add(ta);
setVisible(true);
}
}

Output:-

[image:]
PROGRAM:-04
AIM: Create an applet with a text field and three buttons. When you press each button, make some different text appear in the text field.
Source code:-
import java.awt.*; //imported libraries..
import java.awt.event.*;
import java.applet.*;

public class Prog4 extends Applet implements ActionListener

{
String msg="";
Button one,two,three;
public void init()
{
one=new Button("HCL");
two=new Button("Satyam");
three=new Button("Tech Mahindra");

add(one);
add(two);
add(three);
one.addActionListener(this);
two.addActionListener(this);
three.addActionListener(this);
}

public void actionPerformed(ActionEvent ae)
{
String str=ae.getActionCommand();
if(str.equals("HCL"))
{
msg="congrats You are Selected in HCL";
}
else if(str.equals("Satyam"))
{
msg="Congrats You r selected in Satyam";
}
else
{
msg="congrats You r selected in TechMahindra";
}
repaint();
}

public void paint(Graphics g)
{
g.drawString(msg,6,100);
}
}

Calling applet:
<html>
<head>
<title>"Java Program"</title>
</head>
<body>
<applet code=" Prog4.class" height=400 width=300>
</applet>
</html>

Output:-
[image:] [image:]
 [image:]

PROGRAM:-05
AIM: Create an applet with a button and a text field.Write a handleEvent()
 So that if the button has the focus characters typed into it will appear
	In the text field.
 Source Code:-
import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class Prog5 extends Applet implements ActionListener,ItemListener

{
String msg="";
Button select,reject,waiting;
Checkbox one,two,three;
public void init()
{
select=new Button("SELECTED");
reject=new Button("REJECTED");
waiting=new Button("WAITING");

add(select);
add(reject);
add(waiting);
select.addActionListener(this);
reject.addActionListener(this);
waiting.addActionListener(this);
one=new Checkbox("Written");
two=new Checkbox("Technical");
three=new Checkbox("HR");

add(one);
add(two);
add(three);
one.addItemListener(this);
two.addItemListener(this);
three.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie)
{
repaint();
}

public void actionPerformed(ActionEvent ae)
{
String str=ae.getActionCommand();

if(str.equals("SELECTED"))
{
msg="Congrats u r selected";
}
else if(str.equals("REJECTED"))
{
msg="sorry u r rejected";
}
else
{
msg="u r in waiting";
}
repaint();
}
public void paint(Graphics g)
{
 g.drawString(msg,6,80);
msg="current state";
g.drawString(msg,6,90);
msg="Written : " +one.getState();
g.drawString(msg,6,120);
msg="Technical:" +two.getState();
g.drawString(msg,6,140);
msg="HR :" +three.getState();
g.drawString(msg,6,160);
}
}

Calling applet:
<html>
<head>
<title>"Java Program"</title>
</head>
<body>
<applet code=" Prog5 " height=400 width=300>
</applet>
</html>

Output:-
[image:] [image:][image:] [image:]

PROGRAM:-06
AIM: Develop a servlet that gets invoked when a form on a webpage in HTML is submitted.

Source Code:-
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorld extends HttpServlet
{
public void doGet(HttpServletRequest req,HttpServletResponse res)throws
ServletException,IOException
{
res.setContentType("text/html");
String name=req.getParameter("name");

PrintWriter out=res.getWriter();
out.println("<html>");
out.println("<head><title>Hello,Welcome to Servlets</title></head>");
out.println("<body>");
out.println("Hello"+ name +",Welcome to Servlets”);
out.println("</body>");
out.println("</html>");
}
}

Html Page:
Display.html
<html>
<body>
<form action="http:\\localhost:8080\examples\servlet\HelloWorld">
<input type="text name="name">
<input type="submit">
</form>
</body>
</html>
Output:-
[image:]

[image:]

PROGRAM:-07
AIM: Java Networking- Java sockets and RMI.
JAVA NETWORKING
Networking is the capability of making connections from your applet or application to a system over the network. Networking in java involves classes in the java .net package, which provides cross-platform abstractions for simple networking operations, including connecting and retrieving files by using common Web protocols and creating basic Unix-like sockets. Used in conjunction with input and output streams, reading and writing files over the network becomes as easy as reading or writing to files on the local disk.
These are restrictions, of course java applet cannot read or write from the disk on the machine that’s running them without your express permission and depending on the browser not at all. Depending on the browser, java applets may not be able to connect to systems other than the one upon which they were originally stored.

This section describes three ways you can communicate with systems on the net:

· Show Document(), which enables an applet to tell the browser to load and link to another page on the web
· Open Stream(), a method that opens a connection to a URL and enables you to extract data from that connection.
· The socket classes, socket and Server Socket, which enables you to open standard a socket connections to hosts and read to and write from those connections.

Creating Links Inside Applets
Probably the easiest way to use networking inside an applet is to tell the browser running that applet to load a new page. You can use this, for example, to create animated image maps that, when clicked, load a new page.
To link to a new page, you create an instance of the class URL. You saw some of this when you worked with images, but let’s go over it a little more thoroughly here.
The URL class represents a uniform resource locator. To create a new URL, you can use one of four different forms:

· URL(String,int) creates a new URL object, given a protocol(http,ftp,gopher) a host name (www.line.come,ftp.netcom.com), a port number(80 for http), and a filename or pathname.
· URL(String,String,String) does the same thing as the previous form, minus the port number.
· URL(URL,String) creates a URL, given a base path and a relative path. For the base, you can use getDocumentBase() for the URL of the current HTML file, or get CodeBase() for the URL of the Java applet class file. The relative path will be tacked onto the last directory in those base URLs(just like with images and sounds).
· URL(string) creates a URL object from a URL string (which should include the protocol,hostname,optional port name and filename).

For that last one ((creating a URL from a string), you have to catch a malformed URL exception, so surround the URL constructor with a try ….catch:
	String url= http://www.ywhoo.com/;
	try { theURL = new URL(url);}
catch (MalformedURLException e) { System.out.println(“Bad URL:”+ theURL);}

Getting a URL object is the hard part once you have one, all you have to do is pass it to the browser. Do this by using this single line of code, where theURL is the
URL object to link to:

	getAppletContext().showDocument (theURL);

The browser that contains your URL will then load and display the document at that URL.

	Opening Web Connections

Rather than asking the browser to just load the contents of a file, sometimes you might want to get hold of that file’s contents so that your applet can use them. If the file you want to grab is stored on the Web, and can be accessed using the more common URL forms(http,ftp and so on), your applet can use the URL class to get it.
Note that for security reasons, applets can by default connect back only to the same host from which they originally loaded. This means that if you have your applets stored on the system called www.myhost.com, the only machine your applet can open a connection to will be that as the same host(and that same host name, so be careful with host aliases). If the file the applet wants to retrieve is on that same system, using URL connection is the easiest way to get it.

openstream()
URL defines a method called openStream(), which opens a network connection using the given URL and returns an instance of the class InputStream (part of the java.io package). If you convert that stream to a DataInputStream (with a BufferedInputStream in the middle for better performance), you can then read it.

Remote Method Invocation(RMI):
RMI allows a java object that executes on machine to invoke a method of java object that executes on other machine. This is an important feature because it allows you to build distributed applications.

RMI OP provides Java-to-Java remote method invocation for networked devices. It exposes distributed application protocols in terms of java interfaces, classes and method invocations and shields the developer from the low-level details of the network communications. The RMI PO reference implementation (RI) can be built with implementations of Connected Device Configuration/Foundation Profile (CDC/FP) based profiles such as CDC/FP 1.0.1, as well as with Personal Basis Profile (PBP) 1.0 when it is released.

PROGRAM:-08
AIM: Introduction to ASP.NET
Features of .NET
Common Type System
Language interoperability under .NET is possible only when all the languages share a common data type system. For this, the common type system (CTS) is introduced. CTS ensures that an int in C# is same as an int in VC++. Under CTS, all the classes are derived from the System.Object class and all the primitive data types are mapped to the structures defined in base class library. CTS also specifies the visibility level (from where the type should be accessible) of data types.
Intermediate Language
A .NET programming language does not compile into executable code; instead it compiles into an intermediate code called Microsoft Intermediate Language (MSIL). IL is a CPU-independent language. The IL code is sent to the CLR that converts the code to machine language using the Just In Time compiler, which is then run on the host machine. An important aspect of the IL language is that it provides the hardware abstraction layer. We can view the IL code of our application using the ILDASM tool shipped with Visual Studio.NET.
JIT Compilation
JIT (Just In Time) compiler is a crucial component of the .NET framework. The JIT compiler converts IL code into machine code, which is then executed. The JIT compiler does not compile the entire code at once because it could hamper
the performance of the program. It compiles the code at runtime, at the time it is called. The code that is compiled gets stored until the execution comes to an end. This avoids recompilation of code. The reason why conversion from IL code to machine code takes place at runtime is that the JIT first gets information on the processor type and appropriately converts the IL code so that it would run on that type of processor.
Assemblies
An assembly is a unit containing IL code of a program. It is similar to a DLL file, but one difference is that unlike DLL, an assembly is self-describing. Assemblies contain assembly metadata (or manifest) that gives details of the assembly, type metadata describing the types, methods, etc, defined in the assembly and resources.
Garbage Collection
Garbage Collection is a program that is invoked by the CLR to free the memory that is not being used by the application. Because of this technique the programmers no more need to take care of memory leakages, dangling pointers and clean up of memory.
[bookmark: _Toc69985246][bookmark: _Toc69985308]

Do’s and Dont’s of .NET

The list of tasks that are suitable for coding in .NET is huge, and includes most tasks you might want to write on Windows. Amongst the projects you could easily write in .NET are:
· ASP.NET pages, and reusable web controls.
· Windows Forms-based applications and corresponding reusable controls.
· Networking programs.
· Business logic applications, including applications that interact with databases.
· Performance Counters and related code.
· Developer environments, developer and office tools.
· Console or Windows-based utilities.
· Graphics-intensive programs.
Tasks that are not suitable for .NET development include the following:
· Device drivers
· Debuggers and profilers.
· Real-time-critical applications (but then, Windows isn't really a suitable platform for those types of applications anyway!)
· Programs that are so performance-critical and processor-intensive that you can't afford to lose even 5-10% of processor time, and for which processor time is the bottleneck. Note though, that for many performance-critical applications, including most business logic code, the bottlenecks tend to be related to network or database communications. Such applications are perfectly suitable for transfer to .NET and are unlikely to be affected by the greater processor demands made by managed code.

[bookmark: _Toc69985247][bookmark: _Toc69985309]Benefits of .NET
If you write code targeted at the .NET framework then you may enjoy a few benefits, such as:
· Easier coding and hence shorter development time
· New security-related features to help lock down your machines.
· Much better performance and more powerful web pages.
· Easier deployment.
All of these are discussed below in detail.

Simpler Coding
It's not uncommon to find that the code to perform various tasks becomes a lot simpler when you use .NET. This is largely because of the existence of the .NET Framework Class Library, which implements a large number of boilerplate tasks, and which is only available to managed code.
Coding in almost any language these days relies on the presence of a library – for example if you code in C++ you may have used MFC, ATL, or the standard template library. If you code in VB6, the library of boilerplate code tends to be hidden inside the developer environment so you are not explicitly aware that you are using it, but it is still there behind the scenes, and is invoked for example to instantiate forms and controls. Well the equivalent .NET library, the Framework Class Library, is not only far more powerful than anything Microsoft has previously released, but it's easier to use too. Amongst other things, the Framework Class Library contains support for data access, windows forms and web forms, networking, collections, security and XML.
More Powerful
This is another aspect of way that .NET makes coding easier and faster. Before the days of .NET, there were two common choices of programming language for Windows-based applications:
· C++ or
· VB6.

If you picked C++ then your coding task became much more complex. But you got the full benefit of the entire Windows API.
If you picked VB6 then writing code became relatively simple, at least for smaller projects, but the feature set you could use was much smaller.

For example, you couldn't normally do things like create threads or write windows services in VB6. Not only that, but VB6 lacked implementation- inheritance, which severely restricted the possible architectures you could use for your programs, and could easily make large projects difficult to maintain. Well with .NET, you get both the simplicity and the power at the same time. The .NET version of VB maintains the simplicity of syntax of VB6 but is far more powerful and supports implementation- inheritance. Alternatively, you can write .NET code using Microsoft's new language, C#, which gives you a C++ style syntax while retaining VB's ease of coding and rapid development.

Security
.NET brings its own security model which sits on top of the Windows model. For the first time, using .NET code access security (CAS), you can precisely control what actions some code is allowed to perform based on how much you trust the code, not how much you trust the user under whose account the code is running. This is extremely significant in these days when a lot of code is downloaded over intranets or the Internet. Separately, .NET implements role-based security, which amongst other things provides for compatibility with COM+/MTS role-based security.
If you are writing web applications, then .NET brings huge benefits. Besides ASP pages, you can now write ASP.NET pages (which normally have the extension .aspx – you might notice that the page you are currently reading is an ASP.NET page!). Where ASP pages were written in scripting languages, ASP.NET pages can be written in compiled .NET languages, including C# and VB (though not C++). And the pages really are compiled on first use, not interpreted, which means the performance improvements are immense. (Pages are automatically recompiled if the source file is replaced with a newer file). Having a 'real' programming language instead of a scripting language for your pages also gives you more power and better object models, so you can maintain your code better. Plus, the .NET framework has provided features to allow you to separate the ASP.NET code from any embedded HTML code, again making for source files that are easier to read and maintain.

Any existing ASP pages will still run – there is no problem about mixing ASP and ASP.NET pages on the same site.
While on the subject of web stuff, it's also worth pointing out that various wizards in Visual Studio.NET make it trivially easy to write web services using managed code.
Interoperability
Before the days of .NET, there was only a limited ability for components written in different languages to work together, normally via COM. Using COM, it was possible for C++ code to use a component written in VB or vice versa, but that was as far as it goes – and on the C++ side, the C++ developers needed to do a lot of work to master the intricacies of COM in order for this to work. With .NET, not only is it a lot simpler to use components written in different languages, but there is virtually complete cross-language interoperability. You can for example, write a component in VB, then derive a class from it in C#, and have the VS.NET debugger effortlessly swap between the languages as you are debugging. This makes it very easy for different teams of developers to work together, even though each team is using the language it is most skilled in, or which is most appropriate to its particular task. The potential for reduction in staff training costs should be obvious.
Easier Deployment
.NET makes it easier to deploy software because .NET code is packaged in assemblies which are fully self-describing. In order to deploy COM components, you had to make registry entries that described the components and indicated for example the relevant GUIDs. This not only made deployment harder, but introduced the possibility of bugs due to registry entries getting out of sync with the deployed components – those kinds of bugs are far less likely to occur with .NET applications, for which the number of changes you need to make to a computer to deploy an application is typically smaller. Also, it was difficult to deploy reusable components privately, for use only by one organization's applications. This kind of deployment is trivially easy with .NET. The .NET deployment model also allows for side-by-side installation of different versions of the same components, which largely removes the potential for dll-hell bugs (Bugs caused by one version of a dll being replaced by a supposedly better but in fact incompatible version).

.NET also supports another means of deployment, known as no-touch deployment. With
no-touch deployment, code can be distributed onto a central server, and is automatically downloaded onto the client machines code. Applications distributed this way are fully protected by 	the .NET security mechanisms, and any updated versions are automatically downloaded as required 	the next time the user uses the application. The great thing is that, beyond possibly setting up security policy, there is nothing the systems administrator needs to do on the client machines to install the applications. This means that the you can get the power of for example a native Windows application, combined with the ease of deployment that was previously only available to HTML web-browser-based applications.

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image1.png

image2.png

